Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour

This article has been updated

Key Points

  • Animals feed their gut bacteria, which are fully dependent on their host for providing the nutrients necessary for growth and maintenance of the bacterial population

  • Food intake is followed by cephalic reflex-mediated secretions of nutrients into the gut, which activate the gut–brain satiety pathways via release of intestinal hormones

  • Regular nutrient provision to cultured bacteria or nutrient infusion into the colon stimulates immediate bacterial growth that lasts 20 min

  • The dynamics of the regular nutrient-induced growth of bacteria are similar to the dynamics of meal-induced intestinal satiety hormone (for example, PYY) release

  • Bacterial molecules and metabolites, whose production depends on bacterial growth phases, regulate intestinal release of satiety hormones

  • Systemic bacterial molecules directly activate central appetite pathways that might integrate the energy status of both the host and its gut microbiota

Abstract

The life of all animals is dominated by alternating feelings of hunger and satiety — the main involuntary motivations for feeding-related behaviour. Gut bacteria depend fully on their host for providing the nutrients necessary for their growth. The intrinsic ability of bacteria to regulate their growth and to maintain their population within the gut suggests that gut bacteria can interfere with molecular pathways controlling energy balance in the host. The current model of appetite control is based mainly on gut–brain signalling and the animal's own needs to maintain energy homeostasis; an alternative model might also involve bacteria–host communications. Several bacterial components and metabolites have been shown to stimulate intestinal satiety pathways; at the same time, their production depends on bacterial growth cycles. This short-term bacterial growth-linked modulation of intestinal satiety can be coupled with long-term regulation of appetite, controlled by the neuropeptidergic circuitry in the hypothalamus. Indeed, several bacterial products are detected in the systemic circulation, which might act directly on hypothalamic neurons. This Review analyses the data relevant to possible involvement of the gut bacteria in the regulation of host appetite and proposes an integrative homeostatic model of appetite control that includes energy needs of both the host and its gut bacteria.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Host factors influencing gut bacterial growth.
Figure 2: Distribution of food-derived energy between the host and gut bacteria.
Figure 3: Satiety, bacterial growth and satiety hormone release.
Figure 4: Bacterial growth dynamic-based model of appetite control.
Figure 5: Gut bacteria-derived chemical signals that might activate intestinal satiety pathways.
Figure 6: Bacteria–host integrative homeostatic model of appetite control.

Similar content being viewed by others

Change history

  • 18 November 2016

    In Figure 4 of the above article published online 12 September 2016, hunger signalling to the host was incorrectly labelled as decreased, when it should have been labelled as increased. This has been corrected in the online versions of the article. We apologize for this error.

References

  1. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449, 811–818 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Gilbert, S. F., Sapp, J. & Tauber, A. I. A symbiotic view of life: we have never been individuals. Q. Rev. Biol. 87, 325–341 (2012).

    Article  PubMed  Google Scholar 

  5. Bukharin, O. V. & Perunova, N. B. Microsymbiocenosis (UrDepart RAS, 2014).

    Google Scholar 

  6. Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host–bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Fergus, C., Barnes, D., Alqasem, M. & Kelly, V. The queuine micronutrient: charting a course from microbe to man. Nutrients 7, 2897–2929 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Gautron, L., Elmquist, J. K. & Williams, K. W. Neural control of energy balance: translating circuits to therapies. Cell 161, 133–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aigner, M. Treasure, J., Kaye, W., Kasper, S. & The WFSBP Task Force on Eating Disorders. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of eating disorders. World J. Biol. Psychiatry 12, 400–443 (2011).

    Article  PubMed  Google Scholar 

  13. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1131 (2006).

    Article  PubMed  Google Scholar 

  14. Armougom, F., Henry, M., Vialettes, B., Raccah, D. & Raoult, D. Monitoring bacterial community of human gut microbiota reveals an increase in lactobacillus in obese patients and methanogens in anorexic patients. PLoS ONE 4, e7125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosenbaum, M., Knight, R. & Leibel, R. L. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol. Metab. 26, 493–501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fetissov, S. O. & Déchelotte, P. The new link between gut–brain axis and neuropsychiatric disorders. Curr. Opin. Clin. Nutr. Metab. Care 14, 477–482 (2011).

    Article  PubMed  Google Scholar 

  17. Breton, J. et al. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab. 23, 1–11 (2016).

    Article  CAS  Google Scholar 

  18. Thornton, S. N. Thirst and hydration: physiology and consequences of dysfunction. Physiol. Behav. 100, 15–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Schwartz, M. W. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Hökfelt, T., Bartfai, T. & Bloom, F. Neuropeptides: opportunities for drug discovery. Lancet Neurol. 2, 463–472 (2003).

    Article  PubMed  Google Scholar 

  21. Carter, M. E., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Genetic identification of a neural circuit that suppresses appetite. Nature 503, 111–114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Norsted, E., Gömüç, B. & Meister, B. Protein components of the blood–brain barrier (BBB) in the mediobasal hypothalamus. J. Chem. Neuroanat. 36, 107–121 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Langlet, F. et al. Tanycytic VEGF-A boosts blood–hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 17, 607–617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwartz, G. J. Brainstem integrative function in the central nervous system control of food intake. Forum Nutr. 63, 141–151 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Waterson, M. J. & Horvath, T. L. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 22, 962–970 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Richard, D. Cognitive and autonomic determinants of energy homeostasis in obesity. Nat. Rev. Endocrinol. 11, 489–501 (2015).

    Article  PubMed  Google Scholar 

  28. Sawchenko, P. E. Toward a new neurobiology of energy balance, appetite, and obesity: the anatomists weigh in. J. Comp. Neurol. 402, 435–441 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Elmquist, J. K., Maratos-Flier, E., Saper, C. B. & Flier, J. S. Unraveling the central nervous system pathways underlying responses to leptin. Nat. Neurosci. 1, 445–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Bumaschny, V. F. et al. Obesity-programmed mice are rescued by early genetic intervention. J. Clin. Invest. 122, 4203–4212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Loh, K., Herzog, H. & Shi, Y.-C. Regulation of energy homeostasis by the NPY system. Trends Endocrinol. Metab. 26, 125–135 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Ollmann, M. M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Hahn, T. M., Breininger, J. F., Baskin, D. G. & Schwartz, M. W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. 1, 271–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Tatemoto, K. Neuropeptide Y — a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296, 659–660 (1982).

    Article  CAS  PubMed  Google Scholar 

  36. Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J. & Cone, R. D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Poggioli, R., Vergoni, A. V. & Bertolini, A. ACTH-(1–24) and α-MSH antagonize feeding behavior stimulated by κ opiate agonists. Peptides 7, 843–848 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. Harris, J. I. & Lerner, A. B. Amino-acid sequence of the α-melanocyte-stimulating hormone. Nature 179, 1346–1347 (1957).

    Article  CAS  PubMed  Google Scholar 

  39. Cone, R. D. Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Broberger, C., Johansen, J., Johansson, C., Schalling, M. & Hökfelt, T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc. Natl Acad. Sci. USA 95, 15043–15048 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao, R., Chen, H. & Sharp, B. M. Nicotine-induced norepinephrine release in hypothalamic paraventricular nucleus and amygdala is mediated by N-methyl-d-aspartate receptors and nitric oxide in the nucleus tractus solitarius. J. Pharmacol. Exp. Ther. 320, 837–844 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Appleyard, S. M. et al. Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: regulation by cholecystokinin and opioids. J. Neurosci. 25, 3578–3585 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Appleyard, S. M. et al. Visceral afferents directly activate catecholamine neurons in the solitary tract nucleus. J. Neurosci. 27, 13292–13302 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Larsen, P. J., Tang-Christensen, M., Holst, J. J. & Ørskov, C. Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 77, 257–270 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Mimee, A., Kuksis, M. & Ferguson, A. V. α-MSH exerts direct postsynaptic excitatory effects on NTS neurons and enhances GABAergic signaling in the NTS. Neuroscience 262, 70–82 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, D. et al. Whole-brain mapping of the direct inputs and axonal projections of pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons. Front. Neuroanat. 9, 40 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. Cone, R. D. The central melanocortin system and energy homeostasis. Trends Endocrinol. Metab. 10, 211–216 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Friedman, J. M. & Mantzoros, C. S. 20 years of leptin: from the discovery of the leptin gene to leptin in our therapeutic armamentarium. Metabolism 64, 1–4 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Hillebrand, J. J., de Wied, D. & Adan, R. A. Neuropeptides, food intake and body weight regulation: a hypothalamic focus. Peptides 23, 2283–2306 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Bouret, S. G., Draper, S. J. & Simerly, R. B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Simon, J. J. et al. Neural signature of food reward processing in bulimic-type eating disorders. Soc. Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nsw049 (2016).

  52. Muenzberg-Gruening, H., Qualls-Creekmore, E., Yu, S., Morrison, C. D. & Berthoud, H.-R. Hedonics act in unison with the homeostatic system to unconsciously control body weight. Front. Nutr. 3, 6 (2016).

    Google Scholar 

  53. Denis, R G. P. et al. Palatability can drive feeding independent of AgRP neurons. Cell Metab. 22, 646–657 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Avena, N. M., Rada, P. & Hoebel, B. G. Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neuroscience 156, 865–871 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Jerlhag, E. et al. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict. Biol. 12, 6–16 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Meguid, M. M. et al. Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition 16, 843–857 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Legrand, R., Lucas, N., Breton, J., Déchelotte, P. & Fetissov, S. O. Dopamine release in the lateral hypothalamus is stimulated by α-MSH in both the anticipatory and consummatory phases of feeding. Psychoneuroendocrinology 56, 79–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Barson, J. R., Morganstern, I. & Leibowitz, S. F. Similarities in hypothalamic and mesocorticolimbic circuits regulating the overconsumption of food and alcohol. Physiol. Behav. 104, 128–137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Norgren, R., Hajnal, A. & Mungarndee, S. S. Gustatory reward and the nucleus accumbens. Physiol. Behav. 89, 531–535 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Broberger, C. Brain regulation of food intake and appetite: molecules and networks. J. Intern. Med. 258, 301–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Mutt, V. in Advances in Metabolic Disorders Vol. 11 (eds Luft, R. & Levine, R.) 1–545 (Academic Press, 1988).

    Google Scholar 

  62. Wren, A. M. & Bloom, S. R. Gut hormones and appetite control. Gastroenterology 132, 2116–2130 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Janssen, S. & Depoortere, I. Nutrient sensing in the gut: new roads to therapeutics? Trends Endocrinol. Metab. 24, 92–100 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Feinle-Bisset, C. Upper gastrointestinal sensitivity to meal-related signals in adult humans — relevance to appetite regulation and gut symptoms in health, obesity and functional dyspepsia. Physiol. Behav. 162, 69–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Degen, L., Matzinger, D., Drewe, J. & Beglinger, C. The effect of cholecystokinin in controlling appetite and food intake in humans. Peptides 22, 1265–1269 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Batterham, R. L. et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418, 650–654 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Drucker, D. J. Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat. Clin. Pract. Endocrinol. Metab. 1, 22–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Flanagan, D. E. et al. The influence of insulin on circulating ghrelin. Am. J. Physiol. Endocrinol. Metab. 284, E313–E316 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Müller, T. D. et al. Ghrelin. Mol. Metab. 4, 437–460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nakazato, M. et al. A role for ghrelin in the central regulation of feeding. Nature 409, 194–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Wynne, K. & Bloom, S. R. The role of oxyntomodulin and peptide tyrosine-tyrosine (PYY) in appetite control. Nat. Clin. Pract. Endocrinol. Metab. 2, 612–620 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Date, Y. et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123, 1120–1128 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Koda, S. The role of the vagal nerve in peripheral PYY3–36-induced feeding reduction in rats. Endocrinology 146, 2369–2375 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Cui, R. J., Li, X. & Appleyard, S. M. Ghrelin inhibits visceral afferent activation of catecholamine neurons in the solitary tract nucleus. J. Neurosci. 31, 3484–3492 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rehfeld, J. F. Cholecystokinin as satiety signal. Int. J. Obes. (Lond.) 5, 465–469 (1981).

    CAS  Google Scholar 

  78. Wang, J. D. & Levin, P. A. Metabolism, cell growth and the bacterial cell cycle. Nat. Rev. Microbiol. 7, 822–827 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rice, K. C. & Bayles, K. W. Molecular control of bacterial death and lysis. Microbiol. Mol. Biol. Rev. 72, 85–109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4, 249–258 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Freter, R., Brickner, H., Fekete, J., Vickerman, M. M. & Carey, K. E. Survival and implantation of Escherichia coli in the intestinal tract. Infect. Immun. 39, 686–703 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Allweiss, B., Dostal, J., Carey, K. E., Edwards, T. F. & Freter, R. The role of chemotaxis in the ecology of bacterial pathogens of mucosal surfaces. Nature 266, 448–450 (1977).

    Article  CAS  PubMed  Google Scholar 

  84. Stephen, A. M. & Cummings, J. H. The microbial contribution to human faecal mass. J. Med. Microbiol. 13, 45–56 (1980).

    Article  CAS  PubMed  Google Scholar 

  85. Kotzé, S. et al. Spontaneous bacterial cell lysis and biofilm formation in the colon of the Cape Dune mole-rat and the laboratory rabbit. Appl. Microbiol. Biotechnol. 90, 1773–1783 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Roager, H. M. et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat. Microbiol. 1, 16093 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kau, A. L. et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci. Transl Med 7, 276ra224 (2015).

    Article  CAS  Google Scholar 

  89. Slack, E. et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325, 617–620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vrieze, A. et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J. Hepatol. 60, 824–831 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Tyakht, A. V. et al. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun. 4, 2469 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bolnick, D. I. et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 5, 4500 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Pevsner-Fischer, M. et al. Role of the microbiome in non-gastrointestinal cancers. World J. Clin. Oncol. 7, 200–213 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Haque, T. R. & Barritt, A. S. 4th. Intestinal microbiota in liver disease. Best Pract. Res. Clin. Gastroenterol. 30, 133–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Aron-Wisnewsky, J. & Clement, K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat. Rev. Nephrol. 12, 169–181 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Knip, M. & Siljander, H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 12, 154–167 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Kleiman, S. C. et al. The intestinal microbiota in acute anorexia nervosa and during renourishment: relationship to depression, anxiety, and eating disorder psychopathology. Psychosom. Med. 77, 969–981 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Woting, A. & Blaut, M. The intestinal microbiota in metabolic disease. Nutrients 8, 202 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Furet, J. P. et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59, 3049–3057 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Million, M. et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int. J. Obes. (Lond.) 37, 1460–1466 (2013).

    Article  CAS  Google Scholar 

  106. Monira, S. et al. Gut microbiota of healthy and malnourished children in Bangladesh. Front. Microbiol. 2, 228 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Walters, W. A., Xu, Z. & Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588, 4223–4233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Blanton, L. V. et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science http://dx.doi.org/10.1126/science.aad3311 (2016).

  112. Liou, A. P. et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl Med. 5, 178ra141 (2013).

    Article  CAS  Google Scholar 

  113. Korem, T. et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 349, 1101–1106 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Thaiss, Christoph, A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liang, X., Bushman, F. D. & FitzGerald, G. A. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc. Natl Acad. Sci. USA 112, 10479–10484 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Thaiss, C. A., Zeevi, D., Levy, M., Segal, E. & Elinav, E. A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host. Gut Microbes 6, 137142 (2015).

    Article  CAS  Google Scholar 

  119. Mukherji, A. et al. Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc. Natl Acad. Sci. USA 112, E6691–E6698 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fetissov, S. O. & Meguid, M. M. Serotonin delivery into the ventromedial nucleus of the hypothalamus affects differently feeding pattern and body weight in obese and lean Zucker rats. Appetite 54, 346–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Stunkard, A. J., Grace, W. J. & Wolff, H. G. The night-eating syndrome: a pattern of food intake among certain obese patients. Am. J. Med. 19, 78–86 (1955).

    Article  CAS  PubMed  Google Scholar 

  122. Rajpal, D. K. et al. Selective spectrum antibiotic modulation of the gut microbiome in obesity and diabetes rodent models. PLoS ONE 10, e0145499 (2016).

    Article  CAS  Google Scholar 

  123. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. de Zwaan, M., Marschollek, M. & Allison, K. C. The night eating syndrome (NES) in bariatric surgery patients. Eur. Eat. Disord. Rev. 23, 426–434 (2015).

    Article  PubMed  Google Scholar 

  125. Tremaroli, V. et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 22, 228–238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Power, M. L. & Schulkin, J. Anticipatory physiological regulation in feeding biology: cephalic phase responses. Appetite 50, 194–206 (2008).

    Article  PubMed  Google Scholar 

  127. Hempfling, W. P. & Mainzer, S. E. Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture. J. Bacteriol. 123, 1076–1087 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yun, A. J., Lee, P. Y., Doux, J. D. & Conley, B. R. A general theory of evolution based on energy efficiency: its implications for diseases. Med. Hypoth. 66, 664–670 (2006).

    Article  Google Scholar 

  130. Rabot, S. et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 24, 4948–4959 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Fleissner, C. K. et al. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br. J. Nutr. 104, 919–929 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Woting, A. et al. Alleviation of high fat diet-induced obesity by oligofructose in gnotobiotic mice is independent of presence of Bifidobacterium longum. Mol. Nutr. Food Res. 59, 2267–2278 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Crenn, P. et al. Net digestive absorption and adaptive hyperphagia in adult short bowel patients. Gut 53, 1279–1286 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Messing, B. et al. Intestinal absorption of free oral hyperalimentation in the very short bowel syndrome. Gastroenterology 100, 1502–1508 (1991).

    Article  CAS  PubMed  Google Scholar 

  135. Monteiro-Sepulveda, M. et al. Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metab. 22, 113–124 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Morita, C. et al. Gut dysbiosis in patients with anorexia nervosa. PLoS ONE 10, e0145274 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Crawford, P. A. et al. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc. Natl Acad. Sci. USA 106, 11276–11281 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Labouré, H., Van Wymelbeke, V., Fantino, M. & Nicolaidis, S. Behavioral, plasma, and calorimetric changes related to food texture modification in men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1501–R1511 (2002).

    Article  PubMed  Google Scholar 

  139. Anini, Y. et al. Comparison of the postprandial release of peptide YY and proglucagon-derived peptides in the rat. Pflügers Archiv. 438, 299–306 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Pavlov, I. P. The Work of the Digestive Glands (Charles Griffin Co. Ltd, 1902).

    Google Scholar 

  141. Gerspach, A. C., Steinert, R. E., Schönenberger, L., Graber-Maier, A. & Beglinger, C. The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am. J. Physiol. Endocrinol. Metab. 301, E317–E325 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Furness, J. B., Rivera, L. R., Cho, H.-J., Bravo, D. M. & Callaghan, B. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol. 10, 729–740 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Cox, H. M. et al. Peptide YY is critical for acylethanolamine receptor Gpr119-induced activation of gastrointestinal mucosal responses. Cell Metab. 11, 532–542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Perez-Burgos, A. et al. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G211–G220 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Berthoud, H. R., Kressel, M., Raybould, H. E. & Neuhuber, W. L. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Anat. Embryol. (Berl.) 191, 203–212 (1995).

    Article  CAS  Google Scholar 

  146. Ghatei, M. A., Ratcliffe, B., Bloom, S. R. & Goodlad, R. A. Fermentable dietary fibre, intestinal microflora and plasma hormones in the rat. Clin. Sci. (Lond.) 93, 109–112 (1997).

    Article  CAS  Google Scholar 

  147. Camilleri, M., Madsen, K., Spiller, R., Van Meerveld, B. G. & Verne, G. N. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol. Motil. 24, 503–512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Neunlist, M. et al. The digestive neuronal–glial–epithelial unit: a new actor in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 10, 90–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Hamilton, M. K., Boudry, G., Lemay, D. G. & Raybould, H. E. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G840–G851 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bruce-Keller, A. J. et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry 77, 607–615 (2015).

    Article  PubMed  Google Scholar 

  151. Ukena, S. N. et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS ONE 2, e1308 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ewaschuk, J. B. et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G1025–G1034 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Mariadason, J. M., Catto-Smith, A. & Gibson, P. R. Modulation of distal colonic epithelial barrier function by dietary fibre in normal rats. Gut 44, 394–399 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wall, R. et al. in Microbial Endocrinology: The Microbiota-Gut–Brain Axis in Health and Disease (eds Lyte, M. & John Cryan, F.) 221–239 (Springer New York, 2014).

    Book  Google Scholar 

  155. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Reigstad, C. S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Lee, H. H., Molla, M. N., Cantor, C. R. & Collins, J. J. Bacterial charity work leads to population-wide resistance. Nature 467, 82–85 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chimerel, C. et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 9, 1202–1208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hubbard, T. D. et al. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci. Rep. 5, 12689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fetissov, S. O. et al. Expression of hypothalamic neuropeptides after acute TCDD treatment and distribution of Ah receptor repressor. Regul. Pept. 119, 113–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Bogunovic, M. et al. Enteroendocrine cells express functional Toll-like receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1770–G1783 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Palazzo, M. et al. Activation of enteroendocrine cells via TLRs induces hormone, chemokine, and defensin secretion. J. Immunol. 178, 42964303 (2007).

    Article  Google Scholar 

  163. Beutler, B. & Rietschel, E. T. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3, 169–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Mukherji, A., Kobiita, A., Ye, T. & Chambon, P. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 153, 812–827 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Zhu, X., He, L. & McCluskey, L. P. Ingestion of bacterial lipopolysaccharide inhibits peripheral taste responses to sucrose in mice. Neuroscience 258, 47–61 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Hosoi, T., Okuma, Y., Matsuda, T. & Nomura, Y. Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion. Autonom. Neurosci. 120, 104–107 (2005).

    Article  CAS  Google Scholar 

  167. Bret-Dibat, J. L., Bluthe, R. M., Kent, S., Kelley, K. W. & Dantzer, R. Lipopolysaccharide and interleukin-1 depress food-motivated behavior in mice by a vagal-mediated mechanism. Brain Behav. Immun. 9, 242–246 (1995).

    Article  CAS  PubMed  Google Scholar 

  168. Topping, D. L. & Clifton, P. M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031–1064 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Chambers, E. S., Morrison, D. J. & Frost, G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc. Nutr. Soc. 74, 328–336 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Samuel, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. USA 105, 16767–16772 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wanders, A. J. et al. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes. Rev. 12, 724–739 (2011).

    CAS  PubMed  Google Scholar 

  175. Cani, P. D. et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am. J. Clin. Nutr. 90, 1236–1243 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Tennoune, N. et al. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Transl Psychiatry 4, e458 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Tennoune, N. et al. Sex-related effects of nutritional supplementation of Escherichia coli: relevance to eating disorders. Nutrition 31, 498–507 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Lee, S. et al. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Haange, S. B. et al. Metaproteome analysis and molecular genetics of rat intestinal microbiota reveals section and localization resolved species distribution and enzymatic functionalities. J. Proteome Res. 11, 5406–5417 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Panaro, B. L. et al. The melanocortin-4 receptor is expressed in enteroendocrine L cells and regulates the release of peptide YY and glucagon-like peptide 1 in vivo. Cell Metab. 20, 1018–1029 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ericson, M. D., Schnell, S. M., Freeman, K. T. & Haskell-Luevano, C. A fragment of the Escherichia coli ClpB heat-shock protein is a micromolar melanocortin 1 receptor agonist. Bioorg. Med. Chem. Lett. 25, 5306–5308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Maaser, C. et al. Crucial role of the melanocortin receptor MC1R in experimental colitis. Gut 55, 1415–1422 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Nwokolo, C. U., Freshwater, D. A., O'Hare, P. & Randeva, H. S. Plasma ghrelin following cure of Helicobacter pylori. Gut 52, 637–640 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lluch, J. et al. The characterization of novel tissue microbiota using an optimized 16S metagenomic sequencing pipeline. PLoS ONE 10, e0142334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Amar, J. et al. Energy intake is associated with endotoxemia in apparently healthy men. Am. J. Clin. Nutr. 87, 1219–1223 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Harte, A. L. et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care 35, 375–382 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Huang, Q.-H., Hruby, V. J. & Tatro, J. B. Role of central melanocortins in endotoxin-induced anorexia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276, R864–R871 (1999).

    Article  CAS  Google Scholar 

  188. Dwarkasing, J. T., Marks, D. L., Witkamp, R. F. & van Norren, K. Hypothalamic inflammation and food intake regulation during chronic illness. Peptides 77, 60–66 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Cani, P. D. et al. Endocannabinoids — at the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 12, 133–143 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).

    Article  CAS  PubMed  Google Scholar 

  191. Jo, Y. H., Chen, Y. J., Chua, S. C. Jr, Talmage, D. A. & Role, L. W. Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron 48, 1055–1066 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Nicolaidis, S. Metabolic and humoral mechanisms of feeding and genesis of the ATP/ADP/AMP concept. Physiol. Behav. 104, 8–14 (2011).

    Article  CAS  PubMed  Google Scholar 

  193. Dzamko, N. L. & Steinberg, G. R. AMPK-dependent hormonal regulation of whole-body energy metabolism. Acta Physiol. 196, 115–127 (2009).

    Article  CAS  Google Scholar 

  194. Colldén, G., Mangano, C. & Meister, B. P2X2 purinoreceptor protein in hypothalamic neurons associated with the regulation of food intake. Neuroscience 171, 62–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Zilberter, Y., Zilberter, T. & Bregestovski, P. Neuronal activity in vitro and the in vivo reality: the role of energy homeostasis. Trends Pharmacol. Sci. 31, 394–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  196. Mächler, P. et al. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab. 23, 94–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Le Blay, G., Michel, C., Blottière, H. M. & Cherbut, C. Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in cecal butyrate in rats. J. Nutr. 129, 2231–2235 (1999).

    Article  CAS  PubMed  Google Scholar 

  198. Langhans, W. Hepatic and intestinal handling of metabolites during feeding in rats. Physiol. Behav. 49, 1203–1209 (1991).

    Article  CAS  PubMed  Google Scholar 

  199. Silberbauer, C. J., Surina-Baumgartner, D. M., Arnold, M. & Langhans, W. Prandial lactate infusion inhibits spontaneous feeding in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R646–R653 (2000).

    Article  CAS  PubMed  Google Scholar 

  200. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut–brain neural circuits. Cell 156, 84–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  202. Breton, J. et al. Elevated plasma concentrations of bacterial ClpB protein in patients with eating disorders. Int. J. Eat. Disord. 49, 805–808 (2016).

    Article  PubMed  Google Scholar 

  203. Alexander, K. L., Targan, S. R. & Elson, C. O. Microbiota activation and regulation of innate and adaptive immunity. Immunol. Rev. 260, 206–220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Garidou, L. et al. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab. 22, 100–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. Lindner, C. et al. Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nat. Immunol. 16, 880–888 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Christmann, B. S. et al. Human seroreactivity to gut microbiota antigens. J. Allergy Clin. Immunol. 136, 1378–1386 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Mankarious, S. et al. The half-lives of IgG subclasses and specific antibodies in patients with primary immunodeficiency who are receiving intravenously administered immunoglobulin. J. Lab. Clin. Med. 112, 634–640 (1988).

    CAS  PubMed  Google Scholar 

  208. Fetissov, S. O. et al. Autoantibodies against appetite-regulating peptide hormones and neuropeptides: putative modulation by gut microflora. Nutrition 24, 348–359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Fetissov, S. O. et al. Autoantibodies against neuropeptides are associated with psychological traits in eating disorders. Proc. Natl Acad. Sci. USA 102, 14865–14870 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Karaiskos, D. et al. Psychopathological and personality features in primary Sjogren's syndrome — associations with autoantibodies to neuropeptides. Rheumatology 49, 1762–1769 (2010).

    Article  CAS  PubMed  Google Scholar 

  211. François, M. et al. Ghrelin-reactive immunoglobulins and anxiety, depression and stress-induced cortisol response in adolescents. The TRAILS study. Prog. Neuropsychopharmacol. Biol. Psychiatry 59, 1–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Garcia, F. D. et al. Anti-neuropeptide Y plasma immunoglobulins in relation to mood and appetite in depressive disorder. Psychoneuroendocrinology 37, 1457–1467 (2012).

    Article  CAS  PubMed  Google Scholar 

  213. Lucas, N. et al. Effects of rabbit anti-α-melanocyte-stimulating hormone (α-MSH) immunoglobulins on α-MSH signaling related to food intake control. Neuropeptides 48, 21–27 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. Lucas, N. et al. Anti-α-melanocyte-stimulating hormone autoantibodies in patients with eating disorders and melanocortin 4 receptor signaling. Eur. Neuropsychopharmacol. 24, S704–S705 (2014).

    Article  Google Scholar 

  215. Takagi, K. et al. Anti-ghrelin immunoglobulins modulate ghrelin stability and its orexigenic effect in obese mice and humans. Nat. Commun. 4, 2685 (2013).

    Article  CAS  PubMed  Google Scholar 

  216. François, M. et al. High-fat diet increases ghrelin-expressing cells in stomach, contributing to obesity. Nutrition 32, 709–715 (2016).

    Article  CAS  PubMed  Google Scholar 

  217. Hamze Sinno, M. et al. Regulation of feeding and anxiety by α-MSH reactive autoantibodies. Psychoneuroendocrinology 34, 140–149 (2009).

    Article  CAS  Google Scholar 

  218. McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Maffei, M. et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1, 1155–1161 (1995).

    Article  CAS  PubMed  Google Scholar 

  220. Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775–2786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36, 940–949 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Thompson, J. A., Oliveira, R. A. & Xavier, K. B. Chemical conversations in the gut microbiota. Gut Microbes 7, 163–170 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Jacobi, C. A. et al. Quorum sensing in the probiotic bacterium Escherichia coli Nissle 1917 (Mutaflor) — evidence that furanosyl borate diester (AI-2) is influencing the cytokine expression in the DSS colitis mouse model. Gut Pathog. 4, 1–10 (2012).

    Article  CAS  Google Scholar 

  224. Wynendaele, E. et al. Quorum sensing peptides selectively penetrate the blood–brain barrier. PLoS ONE 10, e0142071 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Berg, R. D. The indigenous gastrointestinal microflora. Trends Microbiol. 4, 430–435 (1996).

    Article  CAS  PubMed  Google Scholar 

  226. Chapelot, D., Aubert, R., Marmonier, C., Chabert, M. & Louis-Sylvestre, J. An endocrine and metabolic definition of the intermeal interval in humans: evidence for a role of leptin on the prandial pattern through fatty acid disposal. Am. J. Clin. Nutr. 72, 42–431 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to all colleagues who participated in and inspired the reviewed research and to his wife being a fervent and pertinent critic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergueï O. Fetissov.

Ethics declarations

Competing interests

The author is a co-founder of TargEDys.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fetissov, S. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol 13, 11–25 (2017). https://doi.org/10.1038/nrendo.2016.150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing