Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulation of metabolism by the innate immune system

Key Points

  • Obesity increases production of proinflammatory cytokines that interfere with the insulin signalling pathway

  • In the obese state, chemotactic signals originating from inflamed adipose tissue, liver and muscle lead to monocyte infiltration, polarization of proinflammatory macrophages, tissue inflammation and insulin resistance

  • In adipose tissue in the lean state, group 2 innate lymphoid cells and eosinophils maintain a type 2 cytokine environment by promoting polarization of alternatively activated macrophages

  • Liver Kupffer cells become activated in obesity and secrete chemokines that induce the accumulation of proinflammatory liver macrophages, which contribute to insulin resistance and hepatic steatosis

  • Macrophage infiltration participates in muscle and pancreas inflammation; however, further research is necessary to determine whether such inflammation is causally related to either muscle insulin resistance or β-cell dysfunction

  • Anti-inflammatory treatments have proven less effective at promoting insulin sensitization in humans than in rodents; consequently, demonstrating clear-cut treatment effects for patients remains a future translational challenge

Abstract

Low-grade tissue inflammation induced by obesity can result in insulin resistance, which in turn is a key cause of type 2 diabetes mellitus. Cells of the innate immune system produce cytokines and other factors that impair insulin signalling, which contributes to the connection between obesity and the onset of type 2 diabetes mellitus. Here, we review the innate immune cells involved in secreting inflammatory factors in the obese state. In the adipose tissue, these cells include proinflammatory adipose tissue macrophages and natural killer cells. We also discuss the role of innate immune cells, such as anti-inflammatory adipose tissue macrophages, eosinophils, group 2 innate lymphoid cells and invariant natural killer T cells, in maintaining an anti-inflammatory and insulin-sensitive environment in the lean state. In the liver, both Kupffer cells and recruited hepatic macrophages can contribute to decreased hepatic insulin sensitivity. Proinflammatory macrophages might also adversely affect insulin sensitivity in the skeletal muscle and pancreatic β-cell function. Finally, this Review provides an overview of the mechanisms for regulating proinflammatory immune responses that could lead to future therapeutic opportunities to improve insulin sensitivity.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Inflammatory signalling pathways involved in the development of insulin resistance.
Figure 2: Obesity induces inflammation in adipose tissue, the liver, skeletal muscle and the pancreas to cause dysbiosis in the intestine.
Figure 3: Regulation of insulin sensitivity by innate immune cells.

References

  1. Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    CAS  Article  PubMed  Google Scholar 

  2. Despres, J. P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).

    CAS  Article  PubMed  Google Scholar 

  3. Centers for Disease Control and Prevention. National diabetes statistics report: estimates of diabetes and its burden in the United States, 2014. CDC [online], (2014).

  4. Heilbronn, L. K. & Campbell, L. V. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr. Pharm. Des. 14, 1225–1230 (2008).

    CAS  Article  PubMed  Google Scholar 

  5. Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  6. Osborn, O. & Olefsky, J. M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18, 363–374 (2012).

    PubMed  CAS  Article  Google Scholar 

  7. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  8. Brestoff, J. R. & Artis, D. Immune regulation of metabolic homeostasis in health and disease. Cell 161, 146–160 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  9. McNelis, J. C. & Olefsky, J. M. Macrophages, immunity, and metabolic disease. Immunity 41, 36–48 (2014).

    CAS  Article  PubMed  Google Scholar 

  10. Sell, H., Habich, C. & Eckel, J. Adaptive immunity in obesity and insulin resistance. Nat. Rev. Endocrinol. 8, 709–716 (2012).

    CAS  Article  PubMed  Google Scholar 

  11. Mathis, D. Immunological goings-on in visceral adipose tissue. Cell Metab. 17, 851–859 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  12. Cipolletta, D. Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology 142, 517–525 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  13. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    CAS  Article  PubMed  Google Scholar 

  14. Baker, R. G., Hayden, M. S. & Ghosh, S. NF-κB, inflammation, and metabolic disease. Cell Metab. 13, 11–22 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  15. Tornatore, L., Thotakura, A. K., Bennett, J., Moretti, M. & Franzoso, G. The nuclear factor κ B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol. 22, 557–566 (2012).

    CAS  Article  PubMed  Google Scholar 

  16. Yin, M. J., Yamamoto, Y. & Gaynor, R. B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature 396, 77–80 (1998).

    CAS  Article  PubMed  Google Scholar 

  17. Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science 293, 1673–1677 (2001).

    CAS  Article  PubMed  Google Scholar 

  18. Shoelson, S. E., Lee, J. & Yuan, M. Inflammation and the IKKβ/IκB/NF-κB axis in obesity- and diet-induced insulin resistance. Int. J. Obes. Relat. Metab. Disord. 27, S49–S52 (2003).

    CAS  Article  PubMed  Google Scholar 

  19. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    CAS  Article  PubMed  Google Scholar 

  20. Sabio, G. et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539–1543 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  21. Solinas, G. et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab. 6, 386–397 (2007).

    CAS  Article  PubMed  Google Scholar 

  22. Solinas, G. & Karin, M. JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction. FASEB J. 24, 2596–2611 (2010).

    CAS  Article  PubMed  Google Scholar 

  23. Yin, J. et al. Palmitate induces endoplasmic reticulum stress and autophagy in mature adipocytes: implications for apoptosis and inflammation. Int. J. Mol. Med. 35, 932–940 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  24. Chen, Y. Y. et al. Palmitate induces autophagy in pancreatic β-cells via endoplasmic reticulum stress and its downstream JNK pathway. Int. J. Mol. Med. 32, 1401–1406 (2013).

    CAS  Article  PubMed  Google Scholar 

  25. Gual, P., Le Marchand-Brustel, Y. & Tanti, J. F. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87, 99–109 (2005).

    CAS  Article  PubMed  Google Scholar 

  26. Westwell-Roper, C., Nackiewicz, D., Dan, M. & Ehses, J. A. Toll-like receptors and NLRP3 as central regulators of pancreatic islet inflammation in type 2 diabetes. Immunol. Cell Biol. 92, 314–323 (2014).

    CAS  Article  PubMed  Google Scholar 

  27. Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  28. Haneklaus, M. & O'Neill, L. A. NLRP3 at the interface of metabolism and inflammation. Immunol. Rev. 265, 53–62 (2015).

    CAS  Article  PubMed  Google Scholar 

  29. Stienstra, R. et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc. Natl Acad. Sci. USA 108, 15324–15329 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  31. Youm, Y. H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  32. Finucane, O. M. et al. Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1β secretion and insulin resistance despite obesity. Diabetes 64, 2116–2128 (2015).

    CAS  Article  PubMed  Google Scholar 

  33. Lagathu, C. et al. Long-term treatment with interleukin-1β induces insulin resistance in murine and human adipocytes. Diabetologia 49, 2162–2173 (2006).

    CAS  Article  PubMed  Google Scholar 

  34. Sauter, N. S., Schulthess, F. T., Galasso, R., Castellani, L. W. & Maedler, K. The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology 149, 2208–2218 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  35. Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    CAS  Article  PubMed  Google Scholar 

  36. Gao, D. et al. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am. J. Physiol. Endocrinol. Metab. 307, E289–E304 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  37. Koenen, T. B. et al. The inflammasome and caspase-1 activation: a new mechanism underlying increased inflammatory activity in human visceral adipose tissue. Endocrinology 152, 3769–3778 (2011).

    CAS  Article  PubMed  Google Scholar 

  38. Lee, J. Y., Sohn, K. H., Rhee, S. H. & Hwang, D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem. 276, 16683–16689 (2001).

    CAS  Article  PubMed  Google Scholar 

  39. Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  40. Pal, D. et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 18, 1279–1285 (2012).

    CAS  Article  PubMed  Google Scholar 

  41. Guo, S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J. Endocrinol. 220, T1–T23 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  42. Werner, E. D., Lee, J., Hansen, L., Yuan, M. & Shoelson, S. E. Insulin resistance due to phosphorylation of insulin receptor substrate-1 at serine 302. J. Biol. Chem. 279, 35298–35305 (2004).

    CAS  Article  PubMed  Google Scholar 

  43. Yaspelkis, B. B. 3rd, Kvasha, I. A. & Figueroa, T. Y. High-fat feeding increases insulin receptor and IRS-1 coimmunoprecipitation with SOCS-3, IKKα/β phosphorylation and decreases PI-3 kinase activity in muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R1709–R1715 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  44. Zolotnik, I. A., Figueroa, T. Y. & Yaspelkis, B. B. 3rd. Insulin receptor and IRS-1 co-immunoprecipitation with SOCS-3, and IKKα/β phosphorylation are increased in obese Zucker rat skeletal muscle. Life Sci. 91, 816–822 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  45. Poletto, A. C. et al. Oleic and linoleic fatty acids downregulate Slc2a4/GLUT4 expression via NFKB and SREBP1 in skeletal muscle cells. Mol. Cell. Endocrinol. 401, 65–72 (2015).

    CAS  Article  PubMed  Google Scholar 

  46. Ruan, H., Hacohen, N., Golub, T. R., Van Parijs, L. & Lodish, H. F. Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-κB activation by TNF-α is obligatory. Diabetes 51, 1319–1336 (2002).

    CAS  Article  PubMed  Google Scholar 

  47. Stephens, J. M. & Pekala, P. H. Transcriptional repression of the GLUT4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-α. J. Biol. Chem. 266, 21839–21845 (1991).

    CAS  PubMed  Google Scholar 

  48. Arner, P. & Kulyte, A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat. Rev. Endocrinol. 11, 276–288 (2015).

    CAS  Article  PubMed  Google Scholar 

  49. Chen, Q. et al. Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1β production in macrophages by targeting STAT3. PLoS ONE 7, e42971 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  50. Liu, S., Yang, Y. & Wu, J. TNFα-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors. Biochem. Biophys. Res. Commun. 414, 618–624 (2011).

    CAS  Article  PubMed  Google Scholar 

  51. Ge, Q., Brichard, S., Yi, X. & Li, Q. MicroRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. J. Immunol. Res. 2014, 987285 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. Guilherme, A., Virbasius, J. V., Puri, V. & Czech, M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367–377 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  53. Ussher, J. R. et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 59, 2453–2464 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  54. Holland, W. L. et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J. Clin. Invest. 121, 1858–1870 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  55. van Diepen, J. A. et al. Hepatocyte-specific IKK-β activation enhances VLDL-triglyceride production in APOE*3-Leiden mice. J. Lipid Res. 52, 942–950 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  56. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  57. Lumeng, C. N., Deyoung, S. M. & Saltiel, A. R. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am. J. Physiol. Endocrinol. Metab. 292, E166–E174 (2007).

    CAS  Article  PubMed  Google Scholar 

  58. Lumeng, C. N., Deyoung, S. M., Bodzin, J. L. & Saltiel, A. R. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56, 16–23 (2007).

    CAS  Article  PubMed  Google Scholar 

  59. Patsouris, D. et al. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 8, 301–309 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  60. Li, P. et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat. Med. 21, 239–247 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  61. Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610–614 (1997).

    CAS  Article  PubMed  Google Scholar 

  62. Spite, M. et al. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity. J. Immunol. 187, 1942–1949 (2011).

    PubMed  CAS  Article  Google Scholar 

  63. Arkan, M. C. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 11, 191–198 (2005).

    CAS  Article  PubMed  Google Scholar 

  64. Han, M. S. et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339, 218–222 (2013).

    CAS  Article  PubMed  Google Scholar 

  65. Kraakman, M. J. et al. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab. 21, 403–416 (2015).

    CAS  Article  PubMed  Google Scholar 

  66. Wernstedt Asterholm, I. et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 20, 103–118 (2014).

    CAS  Article  PubMed  Google Scholar 

  67. Chiang, S. H. et al. The protein kinase IKKε regulates energy balance in obese mice. Cell 138, 961–975 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  68. Reilly, S. M. et al. An inhibitor of the protein kinases TBK1 and IKK-ε improves obesity-related metabolic dysfunctions in mice. Nat. Med. 19, 313–321 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  69. Mowers, J. et al. Inflammation produces catecholamine resistance in obesity via activation of PDE3B by the protein kinases IKKε and TBK1. eLIFE 2, e01119 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. Reilly, S. M. et al. A subcutaneous adipose tissue-liver signalling axis controls hepatic gluconeogenesis. Nat. Commun. 6, 6047 (2015).

    PubMed  CAS  Article  Google Scholar 

  71. Holmes, A. G. et al. Prolonged interleukin-6 administration enhances glucose tolerance and increases skeletal muscle PPARα and UCP2 expression in rats. J. Endocrinol. 198, 367–374 (2008).

    CAS  Article  PubMed  Google Scholar 

  72. Carey, A. L. et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55, 2688–2697 (2006).

    CAS  Article  PubMed  Google Scholar 

  73. Kim, H. J. et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53, 1060–1067 (2004).

    CAS  Article  PubMed  Google Scholar 

  74. Kim, J. K. et al. PKC-θ knockout mice are protected from fat-induced insulin resistance. J. Clin. Invest. 114, 823–827 (2004).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  75. Lundman, P. et al. A high-fat meal is accompanied by increased plasma interleukin-6 concentrations. Nutr. Metab. Cardiovasc. Dis. 17, 195–202 (2007).

    CAS  Article  PubMed  Google Scholar 

  76. Aljada, A. et al. Increase in intranuclear nuclear factor κB and decrease in inhibitor κB in mononuclear cells after a mixed meal: evidence for a proinflammatory effect. Am. J. Clin. Nutr. 79, 682–690 (2004).

    CAS  Article  PubMed  Google Scholar 

  77. van Oostrom, A. J. et al. Activation of leukocytes by postprandial lipemia in healthy volunteers. Atherosclerosis 177, 175–182 (2004).

    CAS  Article  PubMed  Google Scholar 

  78. Kim, J. I. et al. Lipid-overloaded enlarged adipocytes provoke insulin resistance independent of inflammation. Mol. Cell. Biol. 35, 1686–1699 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  79. Kim, J. K. et al. Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. J. Clin. Invest. 113, 756–763 (2004).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  80. Lee, Y. S. et al. Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes 60, 2474–2483 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  81. Gordon, S. & Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).

    CAS  Article  PubMed  Google Scholar 

  82. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  83. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  84. Xu, X. et al. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18, 816–830 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  85. Kratz, M. et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 20, 614–625 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  86. Li, P. et al. Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. J. Biol. Chem. 285, 15333–15345 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  87. Hui, X. et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab. 22, 279–290 (2015).

    CAS  Article  PubMed  Google Scholar 

  88. Patsouris, D. et al. Glucocorticoids and thiazolidinediones interfere with adipocyte-mediated macrophage chemotaxis and recruitment. J. Biol. Chem. 284, 31223–31235 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  89. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  90. Oh, D. Y., Morinaga, H., Talukdar, S., Bae, E. J. & Olefsky, J. M. Increased macrophage migration into adipose tissue in obese mice. Diabetes 61, 346–354 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  91. Inouye, K. E. et al. Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes 56, 2242–2250 (2007).

    CAS  Article  PubMed  Google Scholar 

  92. Kirk, E. A., Sagawa, Z. K., McDonald, T. O., O'Brien, K. D. & Heinecke, J. W. Monocyte chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue. Diabetes 57, 1254–1261 (2008).

    CAS  Article  PubMed  Google Scholar 

  93. Shimizu, I. et al. Semaphorin3E-induced inflammation contributes to insulin resistance in dietary obesity. Cell Metab. 18, 491–504 (2013).

    CAS  Article  PubMed  Google Scholar 

  94. Eguchi, A. et al. Microparticles release by adipocytes act as 'find-me' signals to promote macrophage migration. PLoS ONE 10, e0123110 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. Lumeng, C. N., DelProposto, J. B., Westcott, D. J. & Saltiel, A. R. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57, 3239–3246 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  96. Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  97. Hevener, A. L. et al. Macrophage PPARγ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J. Clin. Invest. 117, 1658–1669 (2007).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  98. O'Rourke, R. W. et al. Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-γ in inflammation in human adipose tissue. Int. J. Obes. (Lond.) 33, 978–990 (2009).

    CAS  Article  Google Scholar 

  99. Revelo, X. S. et al. Perforin is a novel immune regulator of obesity-related insulin resistance. Diabetes 64, 90–103 (2015).

    CAS  Article  PubMed  Google Scholar 

  100. O'Rourke, R. W. et al. Systemic NK cell ablation attenuates intra-abdominal adipose tissue macrophage infiltration in murine obesity. Obesity (Silver Spring) 22, 2109–2114 (2014).

    CAS  Article  Google Scholar 

  101. Wensveen, F. M. et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat. Immunol. 16, 376–385 (2015).

    CAS  Article  PubMed  Google Scholar 

  102. Liu, J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat. Med. 15, 940–945 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  103. Divoux, A. et al. Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. J. Clin. Endocrinol. Metab. 97, E1677–E1685 (2012).

    CAS  Article  PubMed  Google Scholar 

  104. Gutierrez, D. A., Muralidhar, S., Feyerabend, T. B., Herzig, S. & Rodewald, H. R. Hematopoietic Kit deficiency, rather than lack of mast cells, protects mice from obesity and insulin resistance. Cell Metab. 21, 678–691 (2015).

    CAS  Article  PubMed  Google Scholar 

  105. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  106. Hussaarts, L. et al. Chronic helminth infection and helminth-derived egg antigens promote adipose tissue M2 macrophages and improve insulin sensitivity in obese mice. FASEB J. 29, 3027–3039 (2015).

    CAS  Article  PubMed  Google Scholar 

  107. Takatsu, K. & Nakajima, H. IL-5 and eosinophilia. Curr. Opin. Immunol. 20, 288–294 (2008).

    CAS  Article  PubMed  Google Scholar 

  108. Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  109. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  110. Hams, E., Locksley, R. M., McKenzie, A. N. & Fallon, P. G. Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J. Immunol. 191, 5349–5353 (2013).

    CAS  Article  PubMed  Google Scholar 

  111. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    CAS  Article  PubMed  Google Scholar 

  112. Wu, J., Cohen, P. & Spiegelman, B. M. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 27, 234–250 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  113. Bartelt, A. & Heeren, J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 10, 24–36 (2014).

    CAS  Article  PubMed  Google Scholar 

  114. Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  115. Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  116. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    CAS  Article  PubMed  Google Scholar 

  117. Brennan, P. J., Brigl, M. & Brenner, M. B. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat. Rev. Immunol. 13, 101–117 (2013).

    CAS  Article  PubMed  Google Scholar 

  118. Ji, Y. et al. Activation of natural killer T cells promotes M2 macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4 (IL-4)/STAT6 protein signaling axis in obesity. J. Biol. Chem. 287, 13561–13571 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  119. Lynch, L. et al. Invariant NKT cells and CD1d+ cells amass in human omentum and are depleted in patients with cancer and obesity. Eur. J. Immunol. 39, 1893–1901 (2009).

    CAS  Article  PubMed  Google Scholar 

  120. Lynch, L. et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37, 574–587 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  121. Huh, J. Y. et al. A novel function of adipocytes in lipid antigen presentation to iNKT cells. Mol. Cell. Biol. 33, 328–339 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  122. Lynch, L. et al. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of TReg cells and macrophages in adipose tissue. Nat. Immunol. 16, 85–95 (2015).

    CAS  Article  PubMed  Google Scholar 

  123. Ji, Y. et al. Short term high fat diet challenge promotes alternative macrophage polarization in adipose tissue via natural killer T cells and interleukin-4. J. Biol. Chem. 287, 24378–24386 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  124. Mantell, B. S. et al. Mice lacking NKT cells but with a complete complement of CD8+ T-cells are not protected against the metabolic abnormalities of diet-induced obesity. PLoS ONE 6, e19831 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  125. Kotas, M. E. et al. Impact of CD1d deficiency on metabolism. PLoS ONE 6, e25478 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  126. Wu, L. et al. Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proc. Natl Acad. Sci. USA 109, E1143–E1152 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Strodthoff, D. et al. Lack of invariant natural killer T cells affects lipid metabolism in adipose tissue of diet-induced obese mice. Arterioscler. Thromb. Vasc. Biol. 33, 1189–1196 (2013).

    CAS  Article  PubMed  Google Scholar 

  128. Lynch, L. Adipose invariant natural killer T cells. Immunology 142, 337–346 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  129. Tencerova, M. et al. Activated Kupffer cells inhibit insulin sensitivity in obese mice. FASEB J. 29, 2959–2969 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  130. Pardo, V., Gonzalez-Rodriguez, A., Guijas, C., Balsinde, J. & Valverde, A. M. Opposite cross-talk by oleate and palmitate on insulin signaling in hepatocytes through macrophage activation. J. Biol. Chem. 290, 11663–11677 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  131. Dey, A., Allen, J. & Hankey-Giblin, P. A. Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages. Front. Immunol. 5, 683 (2014).

    PubMed  Google Scholar 

  132. Obstfeld, A. E. et al. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59, 916–925 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  133. Morinaga, H. et al. Characterization of distinct subpopulations of hepatic macrophages in HFD/obese mice. Diabetes 64, 1120–1130 (2015).

    CAS  Article  PubMed  Google Scholar 

  134. Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl Acad. Sci. USA 109, E3186–E3195 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. Zigmond, E. et al. Infiltrating monocyte-derived macrophages and resident Kupffer cells display different ontogeny and functions in acute liver injury. J. Immunol. 193, 344–353 (2014).

    CAS  Article  PubMed  Google Scholar 

  136. Huang, W. et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes 59, 347–357 (2010).

    CAS  Article  PubMed  Google Scholar 

  137. Lanthier, N. et al. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G107–G116 (2010).

    CAS  Article  PubMed  Google Scholar 

  138. Bikman, B. T. & Summers, S. A. Ceramides as modulators of cellular and whole-body metabolism. J. Clin. Invest. 121, 4222–4230 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  139. Schubert, K. M., Scheid, M. P. & Duronio, V. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J. Biol. Chem. 275, 13330–13335 (2000).

    CAS  Article  PubMed  Google Scholar 

  140. Fink, L. N. et al. Pro-inflammatory macrophages increase in skeletal muscle of high fat-fed mice and correlate with metabolic risk markers in humans. Obesity (Silver Spring) 22, 747–757 (2014).

    CAS  Article  Google Scholar 

  141. Fink, L. N. et al. Expression of anti-inflammatory macrophage genes within skeletal muscle correlates with insulin sensitivity in human obesity and type 2 diabetes. Diabetologia 56, 1623–1628 (2013).

    CAS  Article  PubMed  Google Scholar 

  142. Varma, V. et al. Muscle inflammatory response and insulin resistance: synergistic interaction between macrophages and fatty acids leads to impaired insulin action. Am. J. Physiol. Endocrinol. Metab. 296, E1300–E1310 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  143. Patsouris, D. et al. Insulin resistance is associated with MCP1-mediated macrophage accumulation in skeletal muscle in mice and humans. PLoS ONE 9, e110653 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  144. Boon, M. R. et al. Short-term high-fat diet increases macrophage markers in skeletal muscle accompanied by impaired insulin signalling in healthy male subjects. Clin. Sci. (Lond.) 128, 143–151 (2015).

    CAS  Article  Google Scholar 

  145. Pillon, N. J., Arane, K., Bilan, P. J., Chiu, T. T. & Klip, A. Muscle cells challenged with saturated fatty acids mount an autonomous inflammatory response that activates macrophages. Cell Commun. Signal. 10, 30 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  146. Richardson, S. J., Willcox, A., Bone, A. J., Foulis, A. K. & Morgan, N. G. Islet-associated macrophages in type 2 diabetes. Diabetologia 52, 1686–1688 (2009).

    CAS  Article  PubMed  Google Scholar 

  147. Ehses, J. A. et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56, 2356–2370 (2007).

    CAS  Article  PubMed  Google Scholar 

  148. Jourdan, T. et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates β cell loss in type 2 diabetes. Nat. Med. 19, 1132–1140 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  149. Eguchi, K. et al. Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab. 15, 518–533 (2012).

    CAS  Article  PubMed  Google Scholar 

  150. Morris, D. L. Minireview: emerging concepts in islet macrophage biology in type 2 diabetes. Mol. Endocrinol. 29, 946–962 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  151. Donath, M. Y. & Shoelson, S. E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107 (2011).

    CAS  Article  PubMed  Google Scholar 

  152. Boni-Schnetzler, M. et al. Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology 150, 5218–5229 (2009).

    CAS  Article  PubMed  Google Scholar 

  153. Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136–140 (2010).

    CAS  Article  PubMed  Google Scholar 

  154. Hasnain, S. Z. et al. Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate β cell stress. Nat. Med. 20, 1417–1426 (2014).

    CAS  Article  PubMed  Google Scholar 

  155. Sauter, N. S. et al. Angiotensin II induces interleukin-1β-mediated islet inflammation and β-cell dysfunction independently of vasoconstrictive effects. Diabetes 64, 1273–1283 (2015).

    CAS  Article  PubMed  Google Scholar 

  156. Tremaroli, V. & Backhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).

    CAS  Article  PubMed  Google Scholar 

  157. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    CAS  Article  PubMed  Google Scholar 

  158. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Article  Google Scholar 

  159. Turnbaugh, P. J., Backhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  160. Caesar, R. et al. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 61, 1701–1707 (2012).

    PubMed  CAS  Article  Google Scholar 

  161. Teixeira, T. F. et al. Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin. Nutr. 31, 735–740 (2012).

    CAS  Article  PubMed  Google Scholar 

  162. Amar, J. et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med. 3, 559–572 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  163. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    CAS  Article  PubMed  Google Scholar 

  164. Johnson, A. M. et al. High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PLoS ONE 10, e0122195 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  165. Wang, X. et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 514, 237–241 (2014).

    CAS  Article  PubMed  Google Scholar 

  166. Goldfine, A. B. et al. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin. Transl. Sci. 1, 36–43 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  167. Goldfine, A. B. et al. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 152, 346–357 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  168. Goldfine, A. B. et al. A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance. Diabetologia 56, 714–723 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  169. Barzilay, J. I. et al. The impact of salsalate treatment on serum levels of advanced glycation end products in type 2 diabetes. Diabetes Care 37, 1083–1091 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  170. Raghavan, R. P., Laight, D. W. & Cummings, M. H. Aspirin in type 2 diabetes, a randomised controlled study: effect of different doses on inflammation, oxidative stress, insulin resistance and endothelial function. Int. J. Clin. Pract. 68, 271–277 (2014).

    CAS  Article  PubMed  Google Scholar 

  171. Xiao, C., Giacca, A. & Lewis, G. F. The effect of high-dose sodium salicylate on chronically elevated plasma nonesterified fatty acid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men. Am. J. Physiol. Endocrinol. Metab. 297, E1205–E1211 (2009).

    CAS  Article  PubMed  Google Scholar 

  172. Fernandez-Real, J. M. et al. Salicylates increase insulin secretion in healthy obese subjects. J. Clin. Endocrinol. Metab. 93, 2523–2530 (2008).

    CAS  Article  PubMed  Google Scholar 

  173. Wascher, T. C. et al. Chronic TNF-α neutralization does not improve insulin resistance or endothelial function in 'healthy' men with metabolic syndrome. Mol. Med. 17, 189–193 (2011).

    CAS  Article  PubMed  Google Scholar 

  174. Stanley, T. L. et al. TNF-α antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J. Clin. Endocrinol. Metab. 96, E146–E150 (2011).

    CAS  Article  PubMed  Google Scholar 

  175. Solomon, D. H. et al. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. JAMA 305, 2525–2531 (2011).

    CAS  Article  PubMed  Google Scholar 

  176. Hensen, J., Howard, C. P., Walter, V. & Thuren, T. Impact of interleukin-1β antibody (canakinumab) on glycaemic indicators in patients with type 2 diabetes mellitus: results of secondary endpoints from a randomized, placebo-controlled trial. Diabetes Metab. 39, 524–531 (2013).

    CAS  Article  PubMed  Google Scholar 

  177. Cavelti-Weder, C. et al. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care 35, 1654–1662 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  178. Sloan-Lancaster, J. et al. Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1β antibody, in patients with type 2 diabetes. Diabetes Care 36, 2239–2246 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  179. Esterson, Y. B. et al. Insulin sensitizing and anti-inflammatory effects of thiazolidinediones are heightened in obese patients. J. Investig. Med. 61, 1152–1160 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  180. Koppaka, S. et al. Reduced adipose tissue macrophage content is associated with improved insulin sensitivity in thiazolidinedione-treated diabetic humans. Diabetes 62, 1843–1854 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  181. Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue TReg cells. Nature 486, 549–553 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  182. Ahmadian, M. et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557–566 (2013).

    CAS  Article  PubMed  Google Scholar 

  183. Dutchak, P. A. et al. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell 148, 556–567 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  184. Oh, D. Y. et al. GPR120 is an ω-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  185. Spencer, M. et al. ω-3 fatty acids reduce adipose tissue macrophages in human subjects with insulin resistance. Diabetes 62, 1709–1717 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  186. Tousoulis, D. et al. ω-3 PUFAs improved endothelial function and arterial stiffness with a parallel anti-inflammatory effect in adults with metabolic syndrome. Atherosclerosis 232, 10–16 (2014).

    CAS  Article  PubMed  Google Scholar 

  187. Oh, D. Y. et al. A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat. Med. 20, 942–947 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  188. Hanefeld, M. et al. Orally-administered chemokine receptor CCR2 antagonist CCX140-B in type 2 diabetes: a pilot double-blind, randomized clinical trial. J. Diabetes Metab. 3, 225 (2012).

    Article  CAS  Google Scholar 

  189. Di Prospero, N. A. et al. CCR2 antagonism in patients with type 2 diabetes mellitus: a randomized, placebo-controlled study. Diabetes Obes. Metab. 16, 1055–1064 (2014).

    CAS  Article  PubMed  Google Scholar 

  190. Arora, T. et al. Roux-en-Y gastric bypass surgery induces early plasma metabolomic and lipidomic alterations in humans associated with diabetes remission. PLoS ONE 10, e0126401 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.E.L. and J.M.O. contributed equally to researching data for the article, discussion of the content, writing the article, and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Jerrold M. Olefsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lackey, D., Olefsky, J. Regulation of metabolism by the innate immune system. Nat Rev Endocrinol 12, 15–28 (2016). https://doi.org/10.1038/nrendo.2015.189

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.189

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing