Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Making sense with thyroid hormone—the role of T3 in auditory development

Abstract

The senses are our window to the world, our interface with the habitat in which we live in and the basis for our communication with each other. Although sensory systems are not generally viewed as major targets of endocrine regulation, sensory development is profoundly influenced by thyroid hormone (T3) signalling. In this article, we discuss this developmental role of T3 and highlight the auditory system as the best-studied example of the interplay between systemic and local tissue mechanisms by which T3 stimulates the onset of sensory function. Several genes that mediate the action of T3 are known to promote sensory development in mice, including genes that encode T3 receptors and deiodinase enzymes that amplify or deplete levels of T3. We also discuss the current knowledge of sensory defects in human genetic disorders in which T3 signalling is impaired. As sensory input provides the only means of acquiring information from the environment, the stimulation of sensory development is one of the most fundamental functions of T3 signalling.

Key Points

  • An endocrine signal, T3, has considerable control over the development of hearing and other senses in humans and mammalian animal models

  • The exposure of immature sensory tissues to T3 is dynamically regulated by systemic availability of the hormone and by local mechanisms in target tissues

  • T3 is a coordinating signal for the late-stage maturation of the auditory system that promotes the onset of function

  • T3 signalling during the later stages of cochlear development complements other mechanisms of short-range signalling at earlier developmental stages

  • The sensitivity of sensory development to T3 suggests that the senses merit further investigation in human disorders resulting from disrupted T3 signalling

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mammalian auditory system.
Figure 2: The role of T3 in the development of the mammalian auditory system.
Figure 3: T3 and cochlear development.45,47,129
Figure 4: Biphasic regulation of the T3 signal during cochlear development in mice.

Similar content being viewed by others

References

  1. Parker, W. R. A cretin treated by thyroid extract. Br. Med. J. 1, 333 (1896).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Osler, W. in Transactions of the Congress of American Physicians and Surgeons 169–206 (The Congress, Michigan, USA, 1897).

    Google Scholar 

  3. Refetoff, S., DeWind, L. T. & DeGroot, L. J. Familial syndrome combining deaf-mutism, stuppled epiphyses, goiter and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J. Clin. Endocrinol. Metab. 27, 279–294 (1967).

    Article  CAS  PubMed  Google Scholar 

  4. DeLong, G. R., Stanbury, J. B. & Fierro-Benitez, R. Neurological signs in congenital iodine-deficiency disorder (endemic cretinism). Dev. Med. Child Neurol. 27, 317–324 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Sap, J. et al. The c-erbA protein is a high affinity receptor for thyroid hormone. Nature 324, 635–640 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Weinberger, C. et al. The c-erb-A gene encodes a thyroid hormone receptor. Nature 324, 641–646 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J. & Larsen, P. R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 23, 38–89 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. St Germain, D. L., Galton, V. A. & Hernandez, A. Minireview: Defining the roles of the iodothyronine deiodinases: current concepts and challenges. Endocrinology 150, 1097–1107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brucker-Davis, F. et al. Prevalence and mechanisms of hearing loss in patients with resistance to thyroid hormone. J. Clin. Endocrinol. Metab. 81, 2768–2772 (1996).

    CAS  PubMed  Google Scholar 

  10. Ng, L. et al. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat. Genet. 27, 94–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Gogakos, A. I., Duncan Bassett, J. H. & Williams, G. R. Thyroid and bone. Arch. Biochem. Biophys. 503, 129–136 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Pei, L. et al. Thyroid hormone receptor repression is linked to type I pneumocyte-associated respiratory distress syndrome. Nat. Med. 17, 1466–1472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bernal, J. Thyroid hormone receptors in brain development and function. Nat. Clin. Pract. Endocrinol. Metab. 3, 249–259 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Sohmer, H. & Freeman, S. Functional development of auditory sensitivity in the fetus and neonate. J. Basic. Clin. Physiol. Pharmacol. 6, 95–108 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Moore, J. K. & Linthicum, F. H. Jr. The human auditory system: a timeline of development. Int. J. Audiol. 46, 460–478 (2007).

    Article  PubMed  Google Scholar 

  16. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Hensch, T. K. Critical period regulation. Annu. Rev. Neurosci. 27, 549–579 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Goslings, B. M., Djokomoeljanto, R., Hoedijono, R., Soepardjo, H. & Querido, A. Studies on hearing loss in a community with endemic cretinism in Central Java, Indonesia. Acta Endocrinol. (Copenh.) 78, 705–713 (1975).

    Article  CAS  Google Scholar 

  19. Deol, M. S. An experimental approach to the understanding and treatment of hereditary syndromes with congenital deafness and hypothyroidism. J. Med. Genet. 10, 235–242 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uziel, A., Marot, M. & Rabie, A. Corrective effects of thyroxine on cochlear abnormalities induced by congenital hypothyroidism in the rat. II. Electrophysiological study. Dev. Brain Res. 19, 123–127 (1985).

    Article  CAS  Google Scholar 

  21. Sprenkle, P. M., McGee, J., Bertoni, J. M. & Walsh, E. J. Consequences of hypothyroidism on auditory system function in Tshr mutant (hyt) mice. J. Assoc. Res. Otolaryngol. 2, 312–329 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marovitz, W. F., Berryhill, B. H. & Peterson, R. R. Disruptions of bony labyrinth, ossicular chain and tympanic bullae in dwarf mice. Laryngoscope 78, 863–872 (1968).

    Article  CAS  PubMed  Google Scholar 

  23. Cordas, E. A. et al. Thyroid hormone receptors control developmental maturation of the middle ear and the size of the ossicular bones. Endocrinology 153, 1548–1560 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dow-Edwards, D., Crane, A. M., Rosloff, B., Kennedy, C. & Sokoloff, L. Local cerebral glucose utilization in the adult cretinous rat. Brain Res. 373, 139–145 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Friauf, E. et al. Hypothyroidism impairs chloride homeostasis and onset of inhibitory neurotransmission in developing auditory brainstem and hippocampal neurons. Eur. J. Neurosci. 28, 2371–2380 (2008).

    Article  PubMed  Google Scholar 

  26. Bradley, D. J., Towle, H. C. & Young, W. S. 3rd . α and β thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc. Natl Acad. Sci. USA 91, 439–443 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bradley, D. J., Towle, H. C. & Young, W. S. 3rd . Spatial and temporal expression of α- and β-thyroid hormone receptor mRNAs, including the β 2-subtype, in the developing mammalian nervous system. J. Neurosci. 12, 2288–2302 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rüsch, A. et al. Retardation of cochlear maturation and impaired hair cell function caused by deletion of all known thyroid hormone receptors. J. Neurosci. 21, 9792–9800 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Griffith, A. J. et al. Knock-in mouse model for resistance to thyroid hormone (RTH): an RTH mutation in the thyroid hormone receptor beta gene disrupts cochlear morphogenesis. J. Assoc. Res. Otolaryngol. 3, 279–288 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Richter, C. P., Munscher, A., Santana Machado, D., Wondisford, F. E. & Ortiga-Carvalho, T. M. Complete activation of thyroid hormone receptor β by T3 is essential for normal cochlear function and morphology in mice. Cell Physiol. Biochem. 28, 997–1008 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Winter, H. et al. Thyroid hormone receptor α1 is a critical regulator for the expression of ion channels during final differentiation of outer hair cells. Histochem. Cell Biol. 128, 65–75 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Ferrara, A. M. et al. Homozygous thyroid hormone receptor β-gene mutations in resistance to thyroid hormone: three new cases and review of the literature. J. Clin. Endocrinol. Metab. 97, 1328–1336 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bochukova, E. et al. A mutation in the thyroid hormone receptor α gene. N. Engl. J. Med. 366, 243–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. van Mullem, A. et al. Clinical phenotype and mutant TRα1. N. Engl. J. Med. 366, 1451–1453 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Itoh, Y. et al. Brain glucose utilization in mice with a targeted mutation in the thyroid hormone α or β receptor gene. Proc. Natl Acad. Sci. USA 98, 9913–9918 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruben, R. J. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol. Suppl. 220, 221–244 (1967).

    Google Scholar 

  37. Kelley, M. W. Regulation of cell fate in the sensory epithelia of the inner ear. Nat. Rev. Neurosci. 7, 837–849 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Li, D., Henley, C. M. & O'Malley, B. W. Jr. Distortion product otoacoustic emissions and outer hair cell defects in the hyt/hyt mutant mouse. Hear. Res. 138, 65–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Christ, S. et al. Hearing loss in athyroid pax8 knockout mice and effects of thyroxine substitution. Audiol. Neurootol. 9, 88–106 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Song, L., McGee, J. A. & Walsh, E. J. Consequences of combined maternal, fetal and persistent postnatal hypothyroidism on the development of auditory function in Tshrhyt mutant mice. Brain Res. 1101, 59–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Johnson, K. R. et al. Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2. Mol. Endocrinol. 21, 1593–1602 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Karolyi, I. J. et al. Dietary thyroid hormone replacement ameliorates hearing deficits in hypothyroid mice. Mamm. Genome 18, 596–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Van Middlesworth, L. & Norris, C. Audiogenic seizures and cochlear damage in rats after perinatal antithyroid treatment. Endocrinol. 106, 1686–1690 (1980).

    Article  CAS  Google Scholar 

  44. Uziel, A. Periods of sensitivity to thyroid hormone during the development of the organ of Corti. Acta Otolaryngol. (Stockh.) 101, 23–27 (1986).

    Article  Google Scholar 

  45. Rüsch, A., Erway, L., Oliver, D., Vennström, B. & Forrest, D. Thyroid hormone receptor β-dependent expression of a potassium conductance in inner hair cells at the onset of hearing. Proc. Natl Acad. Sci. USA 95, 15758–15762 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brandt, N. et al. Thyroid hormone deficiency affects postnatal spiking activity and expression of Ca2+ and K+ channels in rodent inner hair cells. J. Neurosci. 27, 3174–3186 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sendin, G., Bulankina, A. V., Riedel, D. & Moser, T. Maturation of ribbon synapses in hair cells is driven by thyroid hormone. J. Neurosci. 27, 3163–3173 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mustapha, M. et al. Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants. J. Neurosci. 29, 1212–1223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Szarama, K. B., Gavara, N., Petralia, R. S., Chadwick, R. S. & Kelley, M. W. Thyroid hormone increases fibroblast growth factor receptor expression and disrupts cell mechanics in the developing organ of corti. BMC Dev. Biol. 13, 6 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Uziel, A., Pujol, R., Legrand, C. & Legrand, J. Cochlear synaptogenesis in the hypothyroid rat. Dev. Brain Res. 7, 295–301 (1983).

    Article  Google Scholar 

  51. Cantos, R., Lopez, D. E., Merchan, J. A. & Rueda, J. Olivocochlear efferent innervation of the organ of corti in hypothyroid rats. J. Comp. Neurol. 459, 454–467 (2003).

    Article  PubMed  Google Scholar 

  52. Hinojosa, R. A note on development of Corti's organ. Acta Otolaryngol. 84, 238–251 (1977).

    Article  CAS  PubMed  Google Scholar 

  53. Lukashkin, A. N., Richardson, G. P. & Russell, I. J. Multiple roles for the tectorial membrane in the active cochlea. Hear. Res. 266, 26–35 (2010).

    Article  PubMed  Google Scholar 

  54. Shi, Y. B., Fu, L., Hsia, S. C., Tomita, A. & Buchholz, D. Thyroid hormone regulation of apoptotic tissue remodeling during anuran metamorphosis. Cell Res. 11, 245–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Takahashi, K. et al. Caspase-3-deficiency induces hyperplasia of supporting cells and degeneration of sensory cells resulting in the hearing loss. Brain Res. 894, 359–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Rau, A., Legan, P. K. & Richardson, G. P. Tectorin mRNA expression is spatially and temporally restricted during mouse inner ear development. J. Comp. Neurol. 405, 271–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Knipper, M. et al. Thyroid hormone-deficient period prior to the onset of hearing is associated with reduced levels of beta-tectorin protein in the tectorial membrane: implication for hearing loss. J. Biol. Chem. 276, 39046–39052 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Tritsch, N. X., Yi, E., Gale, J. E., Glowatzki, E. & Bergles, D. E. The origin of spontaneous activity in the developing auditory system. Nature 450, 50–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Zuo, J. & Rarey, K. Responsiveness of α1 and β1 cochlear Na, K-ATPase isoforms to thyroid hormone. Acta Otolaryngol. (Stockh.) 116, 422–428 (1996).

    Article  CAS  Google Scholar 

  60. Ruiz-Marcos, A., Salas, J., Sanchez-Toscano, F., Escobar del Rey, F. & Morreale de Escobar, G. Effect of neonatal and adult-onset hypothyroidism on pyramidal cells of the rat auditory cortex. Dev. Brain Res. 9, 205–213 (1983).

    Article  Google Scholar 

  61. Guadaño-Ferraz, A., Escámez, M., Rausell, E. & Bernal, J. Expression of type 2 iodothyronine deiodinase in hypothyroid rat brain indicates an important role of thyroid hormone in the development of specific primary sensory neurons. J. Neurosci. 19, 3430–3439 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bok, J., Chang, W. & Wu, D. K. Patterning and morphogenesis of the vertebrate inner ear. Int. J. Dev. Biol. 51, 521–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Fisher, D. in Werner and Ingbar's The Thyroid (eds Braverman, L. E. & Utiger, R. D.) 974–983 (Lippincott-Raven, USA, 1996).

    Google Scholar 

  64. Ng, L. et al. A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology 150, 1952–1960 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Ng, L. et al. Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase. Proc. Natl Acad. Sci. USA 101, 3474–3479 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaplan, M. M. & Yaskoski, K. A. Maturational patterns of iodothyronine phenolic and tyrosyl ring deiodinase activities in rat cerebrum, cerebellum, and hypothalamus. J. Clin. Invest. 67, 1208–1214 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bates, J. M., St Germain, D. L. & Galton, V. A. Expression profiles of the three iodothyronine deiodinases, D1, D2, and D3, in the developing rat. Endocrinology 140, 844–851 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Kester, M. H. et al. Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J. Clin. Endocrinol. Metab. 89, 3117–3128 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Freeman, S., Cherny, L. & Sohmer, H. Thyroxine affects physiological and morphological development of the ear. Hear. Res. 97, 19–29 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Visser, W. E., Friesema, E. C., Jansen, J. & Visser, T. J. Thyroid hormone transport in and out of cells. Trends Endocrinol. Metab. 19, 50–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Sharlin, D. S., Visser, T. J. & Forrest, D. Developmental and cell-specific expression of thyroid hormone transporters in the mouse cochlea. Endocrinology 152, 5053–5064 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakashima, T. et al. Disorders of cochlear blood flow. Brain Res. Brain Res. Rev. 43, 17–28 (2003).

    Article  PubMed  Google Scholar 

  73. Knipper, M. et al. Thyroid hormone affects Schwann cell and oligodendrocyte gene expression at the glial transition zone of the VIIIth nerve prior to cochlea function. Development 125, 3709–3718 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Berbel, P., Obregon, M. J., Bernal, J., Escobar del Rey, F. & Morreale de Escobar, G. Iodine supplementation during pregnancy: a public health challenge. Trends Endocrinol. Metab. 18, 338–343 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Rajatanavin, R. et al. Endemic cretinism in Thailand: a multidisciplinary survey. Eur. J. Endocrinol. 137, 349–355 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Soriguer, F. et al. The auditory threshold in a school-age population is related to iodine intake and thyroid function. Thyroid 10, 991–999 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Abrams, G. M. & Larsen, P. R. Triiodothyronine and thyroxine in the serum and thyroid glands of iodine-deficient rats. J. Clin. Invest. 52, 2522–2531 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yasuda, T. et al. Outcome of a baby born from a mother with acquired juvenile hypothyroidism having undetectable thyroid hormone concentrations. J. Clin. Endocrinol. Metab. 84, 2630–2632 (1999).

    CAS  PubMed  Google Scholar 

  79. Wasserman, E. E. et al. Maternal thyroid autoantibodies during the third trimester and hearing deficits in children: an epidemiologic assessment. Am. J. Epidemiol. 167, 701–710 (2008).

    Article  PubMed  Google Scholar 

  80. Harris, K. B. & Pass, K. A. Increase in congenital hypothyroidism in New York State and in the United States. Mol. Genet. Metab. 91, 268–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. LaFranchi, S. H. Approach to the diagnosis and treatment of neonatal hypothyroidism. J. Clin. Endocrinol. Metab. 96, 2959–2967 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Vanderschueren-Lodeweyckx, M., Debruyne, F., Dooms, L., Eggermont, E. & Eeckels, R. Sensorineural hearing loss in sporadic congenital hypothyroidism. Arch. Dis. Child. 58, 419–422 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Francois, M., Bonfils, P., Leger, J., Czernichow, P. & Narcy, P. Role of congenital hypothyroidism in hearing loss in children. J. Pediatr. 124, 444–446 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Rovet, J., Walker, W., Bliss, B., Buchanan, L. & Ehrlich, R. Long-term sequelae of hearing impairment in congenital hypothyroidism. J. Pediatr. 128, 776–783 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Parazzini, M. et al. Click-evoked otoacoustic emissions recorded from untreated congenital hypothyroid newborns. Hear. Res. 166, 136–142 (2002).

    Article  PubMed  Google Scholar 

  86. Wasniewska, M. et al. Hearing loss in congenital hypothalamic hypothyroidism: a wide therapeutic window. Hear. Res. 172, 87–91 (2002).

    Article  PubMed  Google Scholar 

  87. Groenhout, E. G. & Dorin, R. I. Generalized thyroid hormone resistance due to a deletion of the carboxy terminus of the c-erbA beta receptor. Mol. Cell Endocrinol. 99, 81–88 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Phillips, S. A. et al. Extreme thyroid hormone resistance in a patient with a novel truncated TR mutant. J. Clin. Endocrinol. Metab. 86, 5142–5147 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Guenther, M. G. et al. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40- repeat protein linked to deafness. Genes Dev. 14, 1048–1057 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ono, S. et al. Homozygosity for a dominant negative thyroid hormone receptor gene responsible for generalized resistance to thyroid hormone. J. Clin. Endocrinol. Metab. 73, 990–994 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. Frank-Raue, K. et al. Severe form of thyroid hormone resistance in a patient with homozygous/hemizygous mutation of T3 receptor gene. Eur. J. Endocrinol. 150, 819–823 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Dumitrescu, A. M. et al. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat. Genet. 37, 1247–1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Azevedo, M. F. et al. Selenoprotein-related disease in a young girl caused by nonsense mutations in the SBP2 gene. J. Clin. Endocrinol. Metab. 95, 4066–4071 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Schoenmakers, E. et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J. Clin. Invest. 120, 4220–4235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hamajima, T., Mushimoto, Y., Kobayashi, H., Saito, Y. & Onigata, K. Novel compound heterozygous mutations in the SBP2 gene: characteristic clinical manifestations and the implications of GH and triiodothyronine in longitudinal bone growth and maturation. Eur. J. Endocrinol. 166, 757–764 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Dumitrescu, A. M., Liao, X. H., Best, T. B., Brockmann, K. & Refetoff, S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am. J. Hum. Genet. 74, 168–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Friesema, E. C. et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364, 1435–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Wirth, E. K. et al. Neuronal 3′,3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome. J. Neurosci. 29, 9439–9449 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Griffith, A. J. & Wangemann, P. Hearing loss associated with enlargement of the vestibular aqueduct: mechanistic insights from clinical phenotypes, genotypes, and mouse models. Hear. Res. 281, 11–17 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Fang, Q. et al. A modifier gene alleviates hypothyroidism-induced hearing impairment in Pou1f1dw dwarf mice. Genetics 189, 665–673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fang, Q., Giordimaina, A. M., Dolan, D. F., Camper, S. A. & Mustapha, M. Genetic background of Prop1(df) mutants provides remarkable protection against hypothyroidism-induced hearing impairment. J. Assoc. Res. Otolaryngol. 13, 173–184 (2012).

    Article  PubMed  Google Scholar 

  102. Guo, T. W. et al. Positive association of the DIO2 (deiodinase type 2) gene with mental retardation in the iodine-deficient areas of China. J. Med. Genet. 41, 585–590 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schomburg, L. Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat. Rev. Endocrinol. 8, 160–171 (2012).

    Article  CAS  Google Scholar 

  104. Newell, F. W. & Diddie, K. R. Typical monochromacy, congenital deafness, and resistance to intracellular action of thyroid hormone. Klin. Monatsbl. Augenheilkd. 171, 731–734 (1977).

    CAS  PubMed  Google Scholar 

  105. Lindstedt, G., Lundberg, P. A., Sjogren, B., Ernest, I. & Sundquist, O. Thyroid hormone resistance in a 35-year old man with recurrent goitre. Scand. J. Clin. Lab. Invest. 42, 585–593 (1982).

    Article  CAS  PubMed  Google Scholar 

  106. Weiss, A. H., Kelly, J. P., Bisset, D. & Deeb, S. S. Reduced L- and M- and increased S-cone functions in an infant with thyroid hormone resistance due to mutations in the THRβ2 gene. Ophthalmic Genet. 33, 187–195 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Ng, L. et al. Type 3 deiodinase, a thyroid-hormone-inactivating enzyme, controls survival and maturation of cone photoreceptors. J. Neurosci. 30, 3347–3357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mirabella, G. et al. Development of contrast sensitivity in infants with prenatal and neonatal thyroid hormone insufficiencies. Pediatr. Res. 57, 902–907 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Simic, N., Westall, C., Astzalos, E. V. & Rovet, J. Visual abilities at 6 months in preterm infants: impact of thyroid hormone deficiency and neonatal medical morbidity. Thyroid 20, 309–315 (2010).

    Article  PubMed  Google Scholar 

  110. Esaki, T. et al. Functional activation of cerebral metabolism in mice with mutated thyroid hormone nuclear receptors. Endocrinology 144, 4117–4122 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Freeman, S. & Sohmer, H. Effect of thyroxine on the development of somatosensory and visual evoked potentials in the rat. J. Neurol. Sci. 128, 143–150 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Auso, E. et al. Protracted expression of serotonin transporter and altered thalamocortical projections in the barrelfield of hypothyroid rats. Eur. J. Neurosci. 14, 1968–1980 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Laureau, E. et al. Somatosensory evoked potentials and auditory brain-stem responses in congenital hypothyroidism. I. A longitudinal study before and after treatment in six infants detected in the neonatal period. Electroencephalogr. Clin. Neurophysiol. 64, 501–510 (1986).

    Article  CAS  PubMed  Google Scholar 

  114. Bongers-Schokking, C. J., Colon, E. J., Hoogland, R. A., de Groot, C. J. & Van den Brande, J. L. Somatosensory evoked potentials in neonates with primary congenital hypothyroidism during the first week of therapy. Pediatr. Res. 30, 34–39 (1991).

    Article  CAS  PubMed  Google Scholar 

  115. Calzà, L., Forrest, D., Vennström, B. & Hökfelt, T. Expression of peptides and other neurochemical markers in hypothalamus and olfactory bulb of mice devoid of all known thyroid hormone receptors. Neuroscience 101, 1001–1012 (2000).

    Article  PubMed  Google Scholar 

  116. Paternostro, M. A. & Meisami, E. Essential role of thyroid hormones in maturation of olfactory receptor neurons: an immunocytochemical study of number and cytoarchitecture of OMP-positive cells in developing rats. Int. J. Dev. Neurosci. 14, 867–880 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Paternostro, M. A. & Meisami, E. Marked restoration of density and total number of mature (knob-bearing) olfactory receptor neurons in rats recovering from early hypothyroid-induced growth retardation. Brain Res. Dev. Brain Res. 96, 173–183 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. McConnell, R. J., Menendez, C. E., Smith, F. R., Henkin, R. I. & Rivlin, R. S. Defects of taste and smell in patients with hypothyroidism. Am. J. Med. 59, 354–364 (1975).

    Article  CAS  PubMed  Google Scholar 

  119. Gordon, B. H., Wong, G. Y., Liu, J. & Rivlin, R. S. Abnormal taste preference for saccharin in hypothyroid rats. Physiol. Behav. 52, 385–388 (1992).

    Article  CAS  PubMed  Google Scholar 

  120. Marsh-Armstrong, N., Huang, H., Remo, B. F., Liu, T. T. & Brown, D. D. Asymmetric growth and development of the Xenopus laevis retina during metamorphosis is controlled by type III deiodinase. Neuron 24, 871–878 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Reiss, J. O. & Burd, G. D. Cellular and molecular interactions in the development of the Xenopus olfactory system. Semin. Cell Dev. Biol. 8, 171–179 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Allison, W. T., Dann, S. G., Veldhoen, K. M. & Hawryshyn, C. W. Degeneration and regeneration of ultraviolet cone photoreceptors during development in rainbow trout. J. Comp. Neurol. 499, 702–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Lema, S. C. & Nevitt, G. A. Evidence that thyroid hormone induces olfactory cellular proliferation in salmon during a sensitive period for imprinting. J. Exp. Biol. 207, 3317–3327 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Crofton, K. M. Developmental disruption of thyroid hormone: correlations with hearing dysfunction in rats. Risk Anal. 24, 1665–1671 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Poon, E., Powers, B. E., McAlonan, R. M., Ferguson, D. C. & Schantz, S. L. Effects of developmental exposure to polychlorinated biphenyls and/or polybrominated diphenyl ethers on cochlear function. Toxicol. Sci. 124, 161–168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Haddow, J. E. et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N. Engl. J. Med. 341, 549–555 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Lazarus, J. H. et al. Antenatal thyroid screening and childhood cognitive function. N. Engl. J. Med. 366, 493–501 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Brent, G. A. The debate over thyroid-function screening in pregnancy. N. Engl. J. Med. 366, 562–563 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Pujol, R., Lavigne-Rebillard, M. & Lenoir, M. in Development of the auditory system (eds Rubel, E. W., Popper, A. N. & Fay, R. R) 146–192 (Springer, Germany, 1997).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the intramural research program at the National Institute of Diabetes and Digestive and Kidney Diseases and at the National Institute on Deafness and other Communication Disorders. The authors thank Dr Francesco Celi for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Douglas Forrest.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, L., Kelley, M. & Forrest, D. Making sense with thyroid hormone—the role of T3 in auditory development. Nat Rev Endocrinol 9, 296–307 (2013). https://doi.org/10.1038/nrendo.2013.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing