Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of amiodarone therapy on thyroid function

Abstract

Amiodarone is a benzofuran derivative approved for the treatment of cardiac arrhythmias. Traditionally classified as a class III antiarrhythmic agent, amiodarone possesses electrophysiologic properties of all four Vaughan–Williams classes. This drug, however, has high iodine content, and this feature plus the intrinsic effects on the body make amiodarone especially toxic to the thyroid gland. Treatment can result in a range of effects from mild derangements in thyroid function to overt hypothyroidism or thyrotoxicosis. The diagnosis and treatment of amiodarone-induced hypothyroidism is usually straightforward, whereas that of amiodarone-induced thyrotoxicosis and the ability to distinguish between the type 1 and type 2 forms of the disease are much more challenging. Dronedarone was approved in 2009 for the treatment of patients with atrial fibrillation. As amiodarone, dronedarone is a benzofuran derivative with similar electrophysiologic properties. In contrast to amiodarone, however, dronedarone is structurally devoid of iodine and has a notably shorter half-life. In studies reported before FDA approval, dronedarone proved to be associated with significantly fewer adverse effects than amiodarone, making it a more attractive choice for patients with atrial fibrillation or flutter, who are at risk of developing amiodarone-induced thyroid dysfunction.

Key Points

  • Amiodarone, an iodine-rich benzofuran derivative, is approved for the treatment of ventricular arrhythmias, but is often used in the treatment of atrial fibrillation

  • Amiodarone and its active metabolite desethylamiodarone have multiple electrophysiologic effects

  • Untoward effects associated with amiodarone use, including effects on the pulmonary, gastrointestinal, ophthalmologic, neurologic, dermatologic and thyroid systems, are prevalent and have resulted in decreased use of the drug

  • Amiodarone-induced thyroid dysfunction, including hypothyroidism and hyperthyroidism, may be due to iodine effects or to intrinsic drug effects

  • Treatment of amiodarone-induced thyrotoxicosis (AIT) varies depending on the type of AIT and does not necessarily include discontinuation of amiodarone treatment

  • Dronedarone, a benzofuran derivative that does not contain iodine, has been approved by the FDA for the treatment of atrial fibrillation and demonstrates less thyroid-related toxic effects than amiodarone

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Synthesis of thyroid hormones.
Figure 3: Algorithm for management of amiodarone-induced thyroid disease.

Similar content being viewed by others

References

  1. Fuster, V. et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation. Circulation 114, 700–752 (2006).

    Article  Google Scholar 

  2. Han, T. S., Williams, G. R. & Vanderpump, M. P. J. Benzofuran derivatives and the thyroid. Clin. Endocrinol. (Oxf.) 70, 2–13 (2009).

    Article  CAS  Google Scholar 

  3. Basaria, S. & Cooper, D. S. Amiodarone and the thyroid. Am. J. Med. 118, 706–714 (2005).

    Article  CAS  Google Scholar 

  4. Nattel, S., Talajic, M., Fermini, B. & Roy, D. Amiodarone: pharmacology, clinical actions and relationships between them. J. Cardiovasc. Electrophysiol. 3, 266–280 (1992).

    Article  Google Scholar 

  5. Singh, B. N. Amiodarone as paradigm for developing new drugs for atrial fibrillation. J. Cardiovasc. Pharmacol. 52, 300–305 (2008).

    Article  CAS  Google Scholar 

  6. Bogazzi, F., Bartalena, L., Gaasperi, M., Braverman, L. E. & Martino, E. The various effects of amiodarone on thyroid function. Thyroid 11, 511–519 (2001).

    Article  CAS  Google Scholar 

  7. Martino, E., Bartalena, L., Bogazzi, F. & Braverman, L. E. The effects of amiodarone on the thyroid. Endocr. Rev. 22, 240–254 (2001).

    CAS  PubMed  Google Scholar 

  8. Miller, J. M. & Zipes, D. P. in Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine 8th edn Ch. 33 (eds Libby, P., Zipes, D. P., Mann, D. P. & Bonow, R. O.) 779–830 (Elsevier Science, Philadelphia, 2007).

    Google Scholar 

  9. Zimetbaum, P. Amiodarone for atrial fibrillation. N. Engl. J. Med. 356, 935–941 (2007).

    Article  CAS  Google Scholar 

  10. Vassallo, P. & Trohman, R. Prescribing amiodarone: an evidence-based review of clinical indications. JAMA 298, 1312–1322 (2007).

    Article  CAS  Google Scholar 

  11. Levey, G. S. & Klein, I. in Stein's Textbook of Internal Medicine 2nd edn Ch. 297 (ed. Stein, J. H.) 1797–1817 (Little, Brown and Company, Boston, 1994).

    Google Scholar 

  12. Kopp, P. in The Thyroid: A Fundamental and Clinical Text, 9th edn Ch. 4B (eds Braverman, L. E. & Utiger, R. D.) 52–76 (Lippincott Williams & Wilkins, Philadelphia, 2005).

    Google Scholar 

  13. Braverman, L. E. & Ingbar, S. H. Changes in thyroidal function during adaptation to large doses of iodide. J. Clin. Invest. 42, 1216–1231 (1963).

    Article  CAS  Google Scholar 

  14. Eng, P. H. et al. Escape from the acute Wolff–Chaikoff effect is associated with a decrease in thyroid sodium/iodide symporter messenger ribonucleic acid and protein. Endocrinology 140, 3404–3410 (1999).

    Article  CAS  Google Scholar 

  15. Daniels, G. H. Amiodarone-induced thyrotoxicosis. J. Clin. Endocrinol. Metab. 86, 3–8 (2001).

    Article  CAS  Google Scholar 

  16. Koenig, R. J. Regulation of type 1 iodothyronine deiodinase in health and disease. Thyroid 15, 835–840 (2005).

    Article  CAS  Google Scholar 

  17. Newman, C. M., Price, A., Davies, D. W., Gray, T. A. & Weetman, A. P. Amiodarone and the thyroid: a practical guide to the management of thyroid dysfunction induced by amiodarone therapy. Heart 79, 121–127 (1998).

    Article  CAS  Google Scholar 

  18. Bogazzi, F. et al. Desethylamiodarone antagonizes the effect of thyroid hormone at the molecular level. Eur. J. Endocrinol. 145, 59–64 (2001).

    Article  CAS  Google Scholar 

  19. Chiovato, L. et al. Studies on the in vitro cytotoxic effect of amiodarone. Endocrinology 134, 2277–2282 (1994).

    Article  CAS  Google Scholar 

  20. Advisory Committee Meeting of the Cardiovascular and Renal Drug Division of the US Food and Drug Administration. Multaq (Dronedarone) Briefing Document http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/CardiovascularandRenalDrugsAdvisoryCommittee/UCM134981.pdf (2009).

  21. Trip, M. D., Wiersinga, W. & Plomp, T. A. Incidence, predictability, and pathogenesis of amiodarone-induced thyrotoxicosis and hypothyroidism. Am. J. Med. 91, 507–511 (1991).

    Article  CAS  Google Scholar 

  22. Martino, E. et al. Environmental iodine intake and thyroid dysfunction during chronic amiodarone therapy. Ann. Intern. Med. 101, 28–34 (1984).

    Article  CAS  Google Scholar 

  23. Martino, E. et al. Amiodarone iodine-induced hypothyroidism: risk factors and follow-up in 28 cases. Clin. Endocrinol. (Oxf.) 26, 227–237 (1987).

    Article  CAS  Google Scholar 

  24. Tedelind, S. et al. Amiodarone inhibits thyroidal iodide transport in vitro by a cyclic adenosine 5′-monophosphate- and iodine-independent mechanism. Endocrinology 147, 2936–2943 (2006).

    Article  CAS  Google Scholar 

  25. Schenck, J. B., Rizvi, A. A. & Lin, T. Severe primary hypothyroidism manifesting with torsades de pointes. Am. J. Med. Sci. 331, 154–156 (2006).

    Article  Google Scholar 

  26. Luciani, R., Falcone, C., Principe, F., Punzo, G. & Menè, P. Acute renal failure due to amiodarone-induced hypothyroidism. Clin. Nephrol. 72, 79–80 (2009).

    Article  CAS  Google Scholar 

  27. Klein, I. & Danzi, S. Thyroid disease and the heart. Circulation 116, 1725–1735 (2007).

    Article  Google Scholar 

  28. Surks, M. I. et al. Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA 291, 228–238 (2004).

    Article  CAS  Google Scholar 

  29. Klein, I. & Ojamaa, K. Thyroid hormone and the cardiovascular system. N. Engl. J. Med. 344, 501–509 (2001).

    Article  CAS  Google Scholar 

  30. Polikar, R. et al. Effect of oral triiodothyronine during amiodarone treatment for ventricular premature complexes. Am. J. Cardiol. 58, 987–991 (1986).

    Article  CAS  Google Scholar 

  31. Stanbury, J. B. et al. Iodine-induced hyperthyroidism: occurrence and epidemiology. Thyroid 8, 83–100 (1998).

    Article  CAS  Google Scholar 

  32. Harjai, K. J. & Licata, A. A. Effects of amiodarone on thyroid function. Ann. Intern. Med. 126, 163–173 (1997).

    Article  Google Scholar 

  33. Sidhu, J. & Jenkins, D. Men are at increased risk of amiodarone-associated thyrotoxicosis in the UK. QJM 96, 949–950 (2003).

    Article  CAS  Google Scholar 

  34. Bogazzi, F. et al. Proportion of type 1 and type 2 amiodarone-induced thyrotoxicosis has changed over a 27-year period in Italy. Clin. Endocrinol. (Oxf.) 67, 533–537 (2007).

    CAS  Google Scholar 

  35. Kurnik, D. et al. Complex drug-drug-disease interactions between amiodarone, warfarin, and the thyroid gland. Medicine (Baltimore) 83, 107–113 (2004).

    Article  Google Scholar 

  36. Amico, J. A., Richardson, V., Alpert, B. & Klein, I. Clinical and chemical assessment of thyroid function during therapy with amiodarone. Arch. Intern. Med. 144, 487–490 (1984).

    Article  CAS  Google Scholar 

  37. Bartalena, L. et al. Interleukin-6: a marker of thyroid destructive processes? J. Clin. Endocrinol. Metab. 79, 1424–1427 (1994).

    Article  CAS  Google Scholar 

  38. Eaton, S. E., Euinton, H. A., Newman, C. M., Weetman, A. P. & Bennet, W. M. Clinical experience of amiodarone-induced thyrotoxicosis over a 3-year period: role of colour-flow Doppler sonography. Clin. Endocrinol. (Oxf.) 56, 33–38 (2002).

    Article  CAS  Google Scholar 

  39. Tanda, M. L., Bogazzi, F., Martino, E. & Bartalena, L. Amiodarone-induced thyrotoxicosis: something new to refine the initial diagnosis? Eur. J. Endocrinol. 159, 359–361 (2008).

    Article  CAS  Google Scholar 

  40. Bogazzi, F. et al. Color flow Doppler sonography rapidly differentiates type I and type II amiodarone-induced thyrotoxicosis. Thyroid 7, 541–545 (1997).

    Article  CAS  Google Scholar 

  41. Martino, E. et al. Twenty-four hour radioactive iodine uptake in 35 patients with amiodarone associated thyrotoxicosis. J. Nucl. Med. 26, 1402–1407 (1985).

    CAS  PubMed  Google Scholar 

  42. Yiu, K. H. et al. Amiodarone-induced thyrotoxicosis is a predictor of adverse cardiovascular outcome. J. Clin. Endocrinol. Metab. 94, 109–114 (2009).

    Article  CAS  Google Scholar 

  43. Bartalena, L., Bogazzi, F. & Martino, E. Amiodarone-induced thyrotoxicosis: a difficult diagnostic and therapeutic challenge. Clin. Endocrinol. (Oxf.) 56, 23–24 (2002).

    Article  CAS  Google Scholar 

  44. Bartalena, L. et al. Treatment of amiodarone-induced thyrotoxicosis, a difficult challenge: results of a prospective study. J. Clin. Endocrinol. Metab. 81, 2930–2933 (1996).

    CAS  PubMed  Google Scholar 

  45. Osman, F., Franklyn, J. A., Sheppard, M. C. & Gammage, M. D. Successful treatment of amiodarone-induced thyrotoxicosis. Circulation 105, 1275–1277 (2002).

    Article  CAS  Google Scholar 

  46. Bogazzi, F. et al. Treatment of type II amiodarone-induced thyrotoxicosis by either iopanoic acid or glucocorticoids: a prospective, randomized study. J. Clin. Endocrinol. Metab. 88, 1999–2002 (2003).

    Article  CAS  Google Scholar 

  47. Bogazzi, F. et al. Glucocorticoids are preferable to thionamides as first-line treatment for amiodarone-induced thyrotoxicosis due to destructive thyroiditis: a matched retrospective cohort study. J. Clin. Endocrinol. Metab. 10.1210/jc.2009–0940.

  48. Farwell, A. P., Abend, S. L., Huang, S. K., Patwardhan, N. A. & Braverman, L. E. Thyroidectomy for amiodarone-induced thyrotoxicosis. JAMA 263, 1526–1528 (1990).

    Article  CAS  Google Scholar 

  49. Gough, J. & Gough, I. R. Total thyroidectomy for amiodarone-induced thyrotoxicosis in patients with severe cardiac disease. World J. Surg. 30, 1957–1961 (2006).

    Article  Google Scholar 

  50. Wolff, J. Perchlorate and the thyroid gland. Pharm. Rev. 50, 89–105 (1998).

    CAS  PubMed  Google Scholar 

  51. Martino, E., Aghini-Lombardi, F., Mariotti, S., Lenziardi, M. & Baschieri, L. Treatment of amiodarone associated thyrotoxicosis by simultaneous administration of potassium perchlorate and methimazole. J. Endocrinol. Invest. 9, 201–207 (1986).

    Article  CAS  Google Scholar 

  52. Bartalena, L. et al. Diagnosis and management of amiodarone-induced thyrotoxicosis in Europe: results of an international survey among members of the European Thyroid Association. Clin. Endocrinol. (Oxf.) 61, 494–502 (2004).

    Article  Google Scholar 

  53. Uzan, L. et al. Continuation of amiodarone therapy despite type II amiodarone-induced thyrotoxicosis. Drug Saf. 29, 231–236 (2006).

    Article  CAS  Google Scholar 

  54. Hohnloser, S. H. et al. Effect of dronedarone on cardiovascular events in atrial fibrillation. N. Engl. J. Med. 360, 668–678 (2009).

    Article  CAS  Google Scholar 

  55. Singh, B. N. et al. Dronedarone for maintenance of sinus rhythm in atrial fibrillation or flutter. N. Engl. J. Med. 357, 987–999 (2007).

    Article  CAS  Google Scholar 

  56. Davy, J. M. et al. Dronedarone for the control of ventricular rate in permanent atrial fibrillation: the Efficacy and safety of dRonedArone for The cOntrol of ventricular rate during atrial fibrillation (ERATO) study. Am. Heart J. 156, 527.e1–527.e9 (2008).

    Article  Google Scholar 

  57. Kathofer, S., Thomas, D. & Karle, C. A. The novel antiarrhythmic drug dronedarone: comparison with amiodarone. Cardiovasc. Drug Rev. 23, 217–230 (2005).

    Article  CAS  Google Scholar 

  58. Touboul, P. et al. Dronedarone for prevention of atrial fibrillation: a dose-ranging study. Eur. Heart J. 24, 1481–1487 (2003).

    Article  CAS  Google Scholar 

  59. Hohnloser, S. H. New pharmacological options for patients with atrial fibrillation: the ATHENA trial. Rev. Esp. Cardiol. 62, 479–481 (2009).

    Article  Google Scholar 

  60. Tschuppert, Y. et al. Effect of dronedarone on renal function in healthy subjects. Br. J. Clin. Pharmacol. 64, 785–791 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irwin Klein.

Ethics declarations

Competing interests

The authors, the Journal Editor V. Heath and the CME questions author Désirée Lie declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen-Lehman, J., Dahl, P., Danzi, S. et al. Effects of amiodarone therapy on thyroid function. Nat Rev Endocrinol 6, 34–41 (2010). https://doi.org/10.1038/nrendo.2009.225

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing