Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Hepatitis B virus infection

Abstract

Hepatitis B virus (HBV) is a hepatotropic virus that can establish a persistent and chronic infection in humans through immune anergy. Currently, 3.5% of the global population is chronically infected with HBV, although the incidence of HBV infections is decreasing owing to vaccination and, to a lesser extent, the use of antiviral therapy to reduce the viral load of chronically infected individuals. The course of chronic HBV infection typically comprises different clinical phases, each of which potentially lasts for decades. Well-defined and verified serum and liver biopsy diagnostic markers enable the assessment of disease severity, viral replication status, patient risk stratification and treatment decisions. Current therapy includes antiviral agents that directly act on viral replication and immunomodulators, such as interferon therapy. Antiviral agents for HBV include reverse transcriptase inhibitors, which are nucleoside or nucleotide analogues that can profoundly suppress HBV replication but require long-term maintenance therapy. Novel compounds are being actively investigated to achieve the goal of HBV surface antigen seroclearance (functional cure), a serological state that is associated with a higher remission rate (thus, no viral rebound) after treatment cessation and a lower rate of cirrhosis and hepatocellular carcinoma. This Primer addresses several aspects of HBV infection, including epidemiology, immune pathophysiology, diagnosis, prevention and management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hepatitis B virions and subviral particles under electron microscopy.
Figure 2: Global distribution of chronic hepatitis B infection and viral genotypes.
Figure 3: Genomic structure of HBV.
Figure 4: The HBV replication cycle and key viral markers.
Figure 5: HBV-specific immune responses.
Figure 6: Hepatitis B disease phases and treatment indications.
Figure 7: Approved treatment agents for chronic HBV infection.

Similar content being viewed by others

References

  1. Marynard, J., Kare, M. A. & Alter, M. in Viral Hepatitis and Liver Disease (ed. Zukerman, A. ) 967–969 (Alan R. Liss, New York, 1988).

    Google Scholar 

  2. Keating, G. M. & Noble, S. Recombinant hepatitis B vaccine (Engerix-B): a review of its immunogenicity and protective efficacy against hepatitis B. Drugs 63, 1021–1051 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. World Health Organization. Global Hepatitis Report, 2017 (WHO, Geneva, 2017).

  4. Schweitzer, A., Horn, J., Mikolajczyk, R. T., Krause, G. & Ott, J. J. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet 386, 1546–1555 (2015).

    Article  PubMed  Google Scholar 

  5. European Association for the Study of the Liver. EASL-HEPAHEALTH Project Report: Risk Factors and the Burden of Liver Disease in Europe and Selected Central Asian Countries (EASL, Geneva, 2018).

  6. Ott, J. J., Stevens, G. A., Groeger, J. & Wiersma, S. T. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine 30, 2212–2219 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Ni, Y.-H. et al. Continuing decrease in hepatitis B virus infection 30 years after initiation of infant vaccination program in Taiwan. Clin. Gastroenterol. Hepatol. 14, 1324–1330 (2016). This study describes the positive long-term effects of universal vaccination on the reduction of hepatitis B prevalence.

    Article  PubMed  Google Scholar 

  8. Tamandjou, C. R., Maponga, T. G., Chotun, N., Preiser, W. & Andersson, M. I. Is hepatitis B birth dose vaccine needed in Africa? Pan Afr. Med. J. 27, 18 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sharma, S., Carballo, M., Feld, J. J. & Janssen, H. L. A. Immigration and viral hepatitis. J. Hepatol. 63, 515–522 (2015).

    Article  PubMed  Google Scholar 

  10. Ward, J. W. & Byrd, K. K. Hepatitis B in the United States: a major health disparity affecting many foreign-born populations. Hepatology 56, 419–421 (2012).

    Article  PubMed  Google Scholar 

  11. Kao, J.-H. & Chen, D.-S. Universal hepatitis B vaccination: killing 2 birds with 1 stone. Am. J. Med. 121, 1029–1031 (2008).

    Article  PubMed  Google Scholar 

  12. Kao, J.-H. & Chen, D.-S. HBV genotypes: epidemiology and implications regarding natural history. Curr. Hepat. Rep. 5, 5–13 (2006).

    Article  Google Scholar 

  13. Sunbul, M. Hepatitis B virus genotypes: global distribution and clinical importance. World J. Gastroenterol. 20, 5427 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mixson-Hayden, T. et al. Hepatitis B virus and hepatitis C virus infections in United States-bound refugees from Asia and Africa. Am. J. Trop. Med. Hyg. 90, 1014–1020 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beasley, R. P. Hepatitis B virus as the etiologic agent in hepatocellular carcinoma — epidemiologic considerations. Hepatology 2, 21S–26S (1982).

    Google Scholar 

  16. Shafritz, D., Sherman, M. & Tur-Kaspa, R. in Hepatology: A Textbook of Liver Disease 945–958 (WB Saunders, Philadelphia, 1990).

    Google Scholar 

  17. Chen, D. From hepatitis to hepatoma: lessons from type B viral hepatitis. Science 262, 369–370 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Yuen, M.-F. et al. Chronic hepatitis B virus infection: disease revisit and management recommendations. J. Clin. Gastroenterol. 50, 286–294 (2016).

    Article  PubMed  Google Scholar 

  19. Mokdad, A. A. et al. Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis. BMC Med. 12, 145 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. El-Serag, H. B. Hepatocellular carcinoma. N. Engl. J. Med. 365, 1118–1127 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2012).

    Article  PubMed  Google Scholar 

  22. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1151–1210 (2017).

    Article  Google Scholar 

  23. Seitz, S., Urban, S., Antoni, C. & Böttcher, B. Cryo-electron microscopy of hepatitis B virions reveals variability in envelope capsid interactions. EMBO J. 26, 4160–4167 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Okamoto, H. et al. Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes. J. Gen. Virol. 69, 2575–2583 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Sureau, C. & Salisse, J. A conformational heparan sulfate binding site essential to infectivity overlaps with the conserved hepatitis B virus A-determinant. Hepatology 57, 985–994 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Yan, H. et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1, e00049 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ni, Y. et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 146, 1070–1083 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Schreiner, S. & Nassal, M. A. Role for the host DNA damage response in hepatitis B virus cccDNA formation — and beyond? Viruses 9, 125 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  29. Newbold, J. E. et al. The covalently closed duplex form of the hepadnavirus genome exists in situ as a heterogeneous population of viral minichromosomes. J. Virol. 69, 3350–3357 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levrero, M. et al. Control of cccDNA function in hepatitis B virus infection. J. Hepatol. 51, 581–592 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, W. et al. PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation. Hepatology 66, 398–415 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Bremer, C. & Glebe, D. The molecular virology of hepatitis B virus. Semin. Liver Dis. 33, 103–112 (2013).

    Article  PubMed  CAS  Google Scholar 

  33. Tu, T., Budzinska, M., Shackel, N. & Urban, S. HBV DNA integration: molecular mechanisms and clinical implications. Viruses 9, 75 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  34. Zhao, X.-L. et al. Serum viral duplex-linear DNA proportion increases with the progression of liver disease in patients infected with HBV. Gut 65, 502–511 (2015).

    Article  PubMed  CAS  Google Scholar 

  35. Wieland, S. F., Spangenberg, H. C., Thimme, R., Purcell, R. H. & Chisari, F. V. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proc. Natl Acad. Sci. USA 101, 2129–2134 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wieland, S., Thimme, R., Purcell, R. H. & Chisari, F. V. Genomic analysis of the host response to hepatitis B virus infection. Proc. Natl Acad. Sci. USA 101, 6669–6674 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fisicaro, P. et al. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut 58, 974–982 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Hösel, M. et al. Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection. Hepatology 50, 1773–1782 (2009).

    Article  PubMed  CAS  Google Scholar 

  39. Revill, P. & Yuan, Z. New insights into how HBV manipulates the innate immune response to establish acute and persistent infection. Antivir. Ther. 18, 1–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Lebossé, F. et al. Intrahepatic innate immune response pathways are downregulated in untreated chronic hepatitis B. J. Hepatol. 66, 897–909 (2017).

    Article  PubMed  CAS  Google Scholar 

  41. Webster, G. Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology 32, 1117–1124 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Xia, Y. et al. Interferon-γ and tumor necrosis factor-α produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis. Gastroenterology 150, 194–205 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Xia, Y. & Protzer, U. Control of hepatitis B virus by cytokines. Viruses 9, 18 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  44. Shin, E.-C., Sung, P. S. & Park, S.-H. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat. Rev. Immunol. 16, 509–523 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Shi, B. et al. HBsAg inhibits IFN-α production in plasmacytoid dendritic cells through TNF-α and IL-10 induction in monocytes. PLoS ONE 7, e44900 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, J. et al. Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology 49, 1132–1140 (2008).

    Article  Google Scholar 

  47. Jiang, M. et al. Toll-like receptor-mediated immune responses are attenuated in the presence of high levels of hepatitis B virus surface antigen. J. Viral Hepat. 21, 860–872 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, S. et al. Hepatitis B virus surface antigen selectively inhibits TLR2 ligand-induced IL-12 production in monocytes/macrophages by interfering with JNK activation. J. Immunol. 190, 5142–5151 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Seeger, C. & Mason, W. S. Hepatitis B virus biology. Microbiol. Mol. Biol. Rev. 64, 51–68 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, M. et al. Hepatitis B virus polymerase inhibits the interferon-inducible MyD88 promoter by blocking nuclear translocation of Stat1. J. Gen. Virol. 88, 3260–3269 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Milich, D. Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology 38, 1075–1086 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Visvanathan, K. et al. Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein. Hepatology 45, 102–110 (2006).

    Article  CAS  Google Scholar 

  53. Li, X. et al. Changes of costimulatory molecule CD28 on circulating CD8+ T cells correlate with disease pathogenesis of chronic hepatitis B. Biomed. Res. Int. 2014, 423181 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Publicover, J. et al. An OX40/OX40L interaction directs successful immunity to hepatitis B virus. Sci. Transl Med. 10, eaah5766 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Webster, G. J. M. et al. Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J. Virol. 78, 5707–5719 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou, S., Ou, R., Huang, L., Price, G. E. & Moskophidis, D. Differential tissue-specific regulation of antiviral CD8+ T-cell immune responses during chronic viral infection. J. Virol. 78, 3578–3600 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boni, C. et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J. Virol. 81, 4215–4225 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fisicaro, P. et al. Combined blockade of programmed death-1 and activation of CD137 increase responses of human liver T cells against HBV, but not HCV. Gastroenterology 143, 1576–1585.e4 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, L. et al. B7-H1 up-regulation on myeloid dendritic cells significantly suppresses T cell immune function in patients with chronic hepatitis B. J. Immunol. 178, 6634–6641 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Schurich, A. et al. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection. Hepatology 53, 1494–1503 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Barboza, L. et al. Altered T cell costimulation during chronic hepatitis B infection. Cell. Immunol. 257, 61–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Dai, K., Huang, L., Sun, X., Yang, L. & Gong, Z. Hepatic CD206-positive macrophages express amphiregulin to promote the immunosuppressive activity of regulatory T cells in HBV infection. J. Leukoc. Biol. 98, 1071–1080 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Chen, C.-F. et al. Regulation of T cell proliferation by JMJD6 and PDGF-BB during chronic hepatitis B infection. Sci. Rep. 4, 6359 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shibolet, O. & Shouval, D. Immunosuppression and HBV Reactivation. Semin. Liver Dis. 33, 167–177 (2013).

    Article  PubMed  CAS  Google Scholar 

  66. Seto, W.-K. et al. Hepatitis B reactivation in patients with previous hepatitis B virus exposure undergoing rituximab-containing chemotherapy for lymphoma: a prospective study. J. Clin. Oncol. 32, 3736–3743 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 67, 370–398 (2017).

    Article  Google Scholar 

  68. Mason, W. S. et al. HBV DNA integration and clonal hepatocyte expansion in chronic hepatitis B patients considered immune tolerant. Gastroenterology 151, 986–998.e4 (2016). This study reports that HBV DNA integration occurs even in the early phase of chronic hepatitis B infection.

    Article  CAS  PubMed  Google Scholar 

  69. Milich, D. R. The concept of immune tolerance in chronic hepatitis B virus infection is alive and well. Gastroenterology 151, 801–804 (2016).

    Article  PubMed  Google Scholar 

  70. Yuen, M. et al. Prognostic factors in severe exacerbation of chronic hepatitis B. Clin. Infect. Dis. 36, 979–984 (2003).

    Article  PubMed  Google Scholar 

  71. Yuen, M.-F. et al. Role of hepatitis B virus genotypes in chronic hepatitis B exacerbation. Clin. Infect. Dis. 37, 593–597 (2003).

    Article  PubMed  Google Scholar 

  72. Yuan, H.-J. et al. Precore and core promoter mutations at the time of HBeAg seroclearance in Chinese patients with chronic hepatitis B. J. Infect. 54, 497–503 (2007).

    Article  PubMed  Google Scholar 

  73. Laras, A., Koskinas, J., Avgidis, K. & Hadziyannis, S. J. Incidence and clinical significance of hepatitis B virus precore gene translation initiation mutations in e antigen-negative patients. J. Viral Hepat. 5, 241–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Yuen, M. et al. HBsAg seroclearance in chronic hepatitis B in Asian patients: replicative level and risk of hepatocellular carcinoma. Gastroenterology 135, 1192–1199 (2008). This is the first study to report the persistent risk of development of HCC in patients with HBsAg seroclearance >50 years of age.

    Article  CAS  PubMed  Google Scholar 

  75. European Association for Study of Liver & Asociacion Latinoamericana para el Estudio del Higado. EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis. J. Hepatol. 63, 237–264 (2015).

    Article  Google Scholar 

  76. Botha, J. F., Dusheiko, G. M., Ritchie, M. J. J., Mouton, H. W. K. & Kew, M. C. Hepatitis B virus carrier state in black children in ovamboland: role of perinatal and horizontal infection. Lancet 323, 1210–1212 (1984).

    Article  Google Scholar 

  77. Seto, W.-K. et al. Linearized hepatitis B surface antigen and hepatitis B core-related antigen in the natural history of chronic hepatitis B. Clin. Microbiol. Infect. 20, 1173–1180 (2014). This study reports the profile of HBsAg levels in different phases of chronic hepatitis B disease.

    Article  CAS  PubMed  Google Scholar 

  78. Cornberg, M. et al. The role of quantitative hepatitis B surface antigen revisited. J. Hepatol. 66, 398–411 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. World Health Organization. Guidelines for the Prevention, Care and Treatment of Persons With Chronic Hepatitis B Infection (WHO, Geneva, 2015).

  80. Terrault, N. A. et al. AASLD guidelines for treatment of chronic hepatitis B. Hepatology 63, 261–283 (2015).

    Article  PubMed  Google Scholar 

  81. Sarin, S. K. et al. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update. Hepatol. Int. 10, 1–98 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, C.-J. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 295, 65 (2006). This study reports the direct proportional relationship between HBV DNA level and the risk of development of HCC and cirrhosis.

    Article  CAS  PubMed  Google Scholar 

  83. Seeff, L. B. et al. A serologic follow-up of the 1942 epidemic of post-vaccination hepatitis in the United States Army. N. Engl. J. Med. 316, 965–970 (1987).

    Article  CAS  PubMed  Google Scholar 

  84. Ozasa, A. et al. Influence of genotypes and precore mutations on fulminant or chronic outcome of acute hepatitis B virus infection. Hepatology 44, 326–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Stevens, C. E., Beasley, R. P., Tsui, J. & Lee, W.-C. Vertical transmission of hepatitis B antigen in Taiwan. N. Engl. J. Med. 292, 771–774 (1975).

    Article  CAS  PubMed  Google Scholar 

  86. Lin, H. J. et al. Evidence for intrafamilial transmission of hepatitis B virus from sequence analysis of mutant HBV DNAs in two Chinese families. Lancet 336, 208–212 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Li, Z., Hou, X. & Cao, G. Is mother-to-infant transmission the most important factor for persistent HBV infection? Emerg. Microbes Infect. 4, e30 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Thio, C. L., Guo, N., Xie, C., Nelson, K. E. & Ehrhardt, S. Global elimination of mother-to-child transmission of hepatitis B: revisiting the current strategy. Lancet Infect. Dis. 15, 981–985 (2015).

    Article  PubMed  Google Scholar 

  89. World Health Organization. Immunization, vaccines and biologicals: Hepatitis B. WHOhttp://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/passive/hepatitis/en/ (2017).

  90. Liang, X. et al. Epidemiological serosurvey of hepatitis B in China — declining HBV prevalence due to hepatitis B vaccination. Vaccine 27, 6550–6557 (2009).

    Article  PubMed  Google Scholar 

  91. World Health Organization. Global Health Sector Strategy On Viral Hepatitis 2016–2021 (WHO, Geneva, 2017).

  92. World Health Organization. Data, Statistics and Graphics (WHO, Geneva, 2018).

  93. Patton, H. & Tran, T. T. Management of hepatitis B during pregnancy. Nat. Rev. Gastroenterol. Hepatol. 11, 402–409 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lin, X. et al. Immunoprophylaxis failure against vertical transmission of hepatitis B virus in the Chinese population. Pediatr. Infect. Dis. J. 33, 897–903 (2014).

    Article  PubMed  Google Scholar 

  95. Pan, C. Q. et al. Tenofovir to prevent hepatitis B transmission in mothers with high viral load. N. Engl. J. Med. 374, 2324–2334 (2016). This study demonstrates the efficacy of nucleotide analogue therapy on reducing the rate of MTCT of HBV.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, H. et al. Telbivudine or lamivudine use in late pregnancy safely reduces perinatal transmission of hepatitis B virus in real-life practice. Hepatology 60, 468–476 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Brown, R. S. et al. Antiviral therapy in chronic hepatitis B viral infection during pregnancy: a systematic review and meta-analysis. Hepatology 63, 319–333 (2015).

    Article  PubMed  CAS  Google Scholar 

  98. Yuen, M.-F. Prognostic determinants for chronic hepatitis B in Asians: therapeutic implications. Gut 54, 1610–1614 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Iloeje, U. H. et al. Predicting cirrhosis risk based on the level of circulating hepatitis B viral load. Gastroenterology 130, 678–686 (2006).

    Article  PubMed  Google Scholar 

  100. Lai, C.-L. & Yuen, M.-F. Chronic hepatitis B — new goals, new treatment. N. Engl. J. Med. 359, 2488–2491 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Yuen, M.-F. et al. Independent risk factors and predictive score for the development of hepatocellular carcinoma in chronic hepatitis B. J. Hepatol. 50, 80–88 (2009).

    Article  PubMed  Google Scholar 

  102. Zhang, A.-Y. et al. Deep sequencing analysis of quasispecies in the HBV pre-S region and its association with hepatocellular carcinoma. J. Gastroenterol. 52, 1064–1074 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Yuen, M.-F. et al. Risk for hepatocellular carcinoma with respect to hepatitis B virus genotypes B/C, specific mutations of enhancer II/core promoter/precore regions and HBV DNA levels. Gut 57, 98–102 (2007). This study reports the synergistic effects of different risk factors on the development of HCC.

    Article  PubMed  CAS  Google Scholar 

  104. Wong, V. W.-S. et al. Clinical scoring system to predict hepatocellular carcinoma in chronic hepatitis B carriers. J. Clin. Oncol. 28, 1660–1665 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Yang, H.-I. et al. Risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B): development and validation of a predictive score. Lancet Oncol. 12, 568–574 (2011).

    Article  PubMed  Google Scholar 

  106. Papatheodoridis, G. et al. PAGE-B predicts the risk of developing hepatocellular carcinoma in Caucasians with chronic hepatitis B on 5-year antiviral therapy. J. Hepatol. 64, 800–806 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Kim, G.-A. et al. Incidence of hepatocellular carcinoma after HBsAg seroclearance in chronic hepatitis B patients: a need for surveillance. J. Hepatol. 62, 1092–1099 (2015).

    Article  PubMed  Google Scholar 

  108. Kim, G.-A. et al. HBsAg seroclearance after nucleoside analogue therapy in patients with chronic hepatitis B: clinical outcomes and durability. Gut 63, 1325–1332 (2013). This study reports the sustained clinical benefits in patients with HBsAg seroclearance after cessation of therapy.

    Article  PubMed  CAS  Google Scholar 

  109. Lai, C.-L. & Yuen, M.-F. Prevention of hepatitis B virus-related hepatocellular carcinoma with antiviral therapy. Hepatology 57, 399–408 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Hosaka, T. et al. Long-term entecavir treatment reduces hepatocellular carcinoma incidence in patients with hepatitis B virus infection. Hepatology 58, 98–107 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Tenney, D. J. et al. Long-term monitoring shows hepatitis B virus resistance to entecavir in nucleoside-naïve patients is rare through 5 years of therapy. Hepatology 49, 1503–1514 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Murakami, E. et al. Implications of efficient hepatic delivery by tenofovir alafenamide (GS-7340) for hepatitis B virus therapy. Antimicrob. Agents Chemother. 59, 3563–3569 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Buti, M. et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate for the treatment of patients with HBeAg-negative chronic hepatitis B virus infection: a randomised, double-blind, phase 3, non-inferiority trial. Lancet Gastroenterol. Hepatol. 1, 196–206 (2016).

    Article  PubMed  Google Scholar 

  114. Marcellin, P. et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 381, 468–475 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Chang, T.-T. et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology 52, 886–893 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Chevaliez, S., Hézode, C., Bahrami, S., Grare, M. & Pawlotsky, J.-M. Long-term hepatitis B surface antigen (HBsAg) kinetics during nucleoside/nucleotide analogue therapy: Finite treatment duration unlikely. J. Hepatol. 58, 676–683 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Lai, C.-L. et al. Reduction of covalently closed circular DNA with long-term nucleos(t)ide analogue treatment in chronic hepatitis B. J. Hepatol. 66, 275–281 (2017). This study reports the virological status in the liver after long-term nucleos(t)ide analogue treatment.

    Article  CAS  PubMed  Google Scholar 

  118. Nayagam, S. et al. Cost-effectiveness of community-based screening and treatment for chronic hepatitis B in The Gambia: an economic modelling analysis. Lancet Glob. Health 4, e568–e578 (2016).

    Article  PubMed  Google Scholar 

  119. Janssen, H. L. A. et al. Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial. Lancet 365, 123–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Marcellin, P. et al. Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B. N. Engl. J. Med. 351, 1206–1217 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Lampertico, P. et al. Randomised study comparing 48 and 96 weeks peginterferon α-2a therapy in genotype D HBeAg-negative chronic hepatitis B. Gut 62, 290–298 (2012).

    Article  PubMed  CAS  Google Scholar 

  122. Buster, E. H. C. J. et al. Factors that predict response of patients with hepatitis B e antigen–positive chronic hepatitis B to peginterferon-alfa. Gastroenterology 137, 2002–2009 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Bonino, F. et al. Predicting response to peginterferon-2a, lamivudine and the two combined for HBeAg-negative chronic hepatitis B. Gut 56, 699–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Sonneveld, M. J. et al. Response-guided peginterferon therapy in hepatitis B e antigen-positive chronic hepatitis B using serum hepatitis B surface antigen levels. Hepatology 58, 872–880 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Rijckborst, V. et al. Early on-treatment prediction of response to peginterferon alfa-2a for HBeAg-negative chronic hepatitis B using HBsAg and HBV DNA levels. Hepatology 52, 454–461 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Marcellin, P. et al. Combination of tenofovir disoproxil fumarate and peginterferon α-2a increases loss of hepatitis B surface antigen in patients with chronic hepatitis B. Gastroenterology 150, 134–144.e10 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Bourlière, M. et al. Effect on HBs antigen clearance of addition of pegylated interferon alfa-2a to nucleos(t)ide analogue therapy versus nucleos(t)ide analogue therapy alone in patients with HBe antigen-negative chronic hepatitis B and sustained undetectable plasma hepatitis. Lancet Gastroenterol. Hepatol. 2, 177–188 (2017).

    Article  PubMed  Google Scholar 

  128. Fattovich, G., Bortolotti, F. & Donato, F. Natural history of chronic hepatitis B: Special emphasis on disease progression and prognostic factors. J. Hepatol. 48, 335–352 (2008).

    Article  PubMed  CAS  Google Scholar 

  129. Chen, C.-J. & Yang, H.-I. Natural history of chronic hepatitis B REVEALed. J. Gastroenterol. Hepatol. 26, 628–638 (2011).

    Article  PubMed  Google Scholar 

  130. Buti, M. et al. Long-term clinical outcomes in cirrhotic chronic hepatitis B patients treated with tenofovir disoproxil fumarate for up to 5 years. Hepatol. Int. 9, 243–250 (2015).

    Article  PubMed  Google Scholar 

  131. Papatheodoridis, G. V., Chan, H. L.-Y., Hansen, B. E., Janssen, H. L. A. & Lampertico, P. Risk of hepatocellular carcinoma in chronic hepatitis B: assessment and modification with current antiviral therapy. J. Hepatol. 62, 956–967 (2015).

    Article  PubMed  Google Scholar 

  132. Ahn, J. et al. Lower observed hepatocellular carcinoma incidence in chronic hepatitis B patients treated with entecavir: results of the ENUMERATE study. Am. J. Gastroenterol. 111, 1297–1304 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Yao, F. Lamivudine treatment is beneficial in patients with severely decompensated cirrhosis and actively replicating hepatitis B infection awaiting liver transplantation: a comparative study using a matched, untreated cohort. Hepatology 34, 411–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Fontana, R. J. et al. Determinants of early mortality in patients with decompensated chronic hepatitis B treated with antiviral therapy. Gastroenterology 123, 719–727 (2002).

    Article  PubMed  Google Scholar 

  135. Shim, J. H. et al. Efficacy of entecavir in treatment-naïve patients with hepatitis B virus-related decompensated cirrhosis. J. Hepatol. 52, 176–182 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Liaw, Y.-F. et al. Tenofovir disoproxil fumarate (TDF), emtricitabine/TDF, and entecavir in patients with decompensated chronic hepatitis B liver disease. Hepatology 53, 62–72 (2010).

    Article  PubMed  Google Scholar 

  137. Su, T.-H. et al. Four-year entecavir therapy reduces hepatocellular carcinoma, cirrhotic events and mortality in chronic hepatitis B patients. Liver Int. 36, 1755–1764 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Flemming, J. A., Kim, W. R., Brosgart, C. L. & Terrault, N. A. Reduction in liver transplant wait-listing in the era of direct-acting antiviral therapy. Hepatology 65, 804–812 (2016).

    Article  PubMed  CAS  Google Scholar 

  139. Zhou, K. & Terrault, N. Management of hepatitis B in special populations. Best Pract. Res. Clin. Gastroenterol. 31, 311–320 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Cholongitas, E. & Papatheodoridis, G. V. High genetic barrier nucleos(t)ide analogue(s) for prophylaxis from hepatitis B virus recurrence after liver transplantation: a systematic review. Am. J. Transplant. 13, 353–362 (2012).

    Article  PubMed  CAS  Google Scholar 

  141. Fung, J. et al. Entecavir monotherapy is effective in suppressing hepatitis B virus after liver transplantation. Gastroenterology 141, 1212–1219 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Fung, J. et al. Long-term outcomes of entecavir monotherapy for chronic hepatitis B after liver transplantation: results up to 8 years. Hepatology 66, 1036–1044 (2017). This study reports a high rate of HBsAg negativity using long-term entecavir monotherapy after liver transplantation.

    Article  CAS  PubMed  Google Scholar 

  143. Samuel, D. et al. Liver transplantation in European patients with the hepatitis B surface antigen. N. Engl. J. Med. 329, 1842–1847 (1993).

    Article  CAS  PubMed  Google Scholar 

  144. Adil, B. et al. Hepatitis B virus and hepatitis D virus recurrence in patients undergoing liver transplantation for hepatitis B virus and hepatitis B virus plus hepatitis D virus. Transplant. Proc. 48, 2119–2123 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Coffin, C. S. et al. Virologic and clinical outcomes of hepatitis B virus infection in HIV-HBV coinfected transplant recipients. Am. J. Transplant. 10, 1268–1275 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Loomba, R. & Liang, T. J. Hepatitis B reactivation associated with immune suppressive and biological modifier therapies: current concepts, management strategies, and future directions. Gastroenterology 152, 1297–1309 (2017).

    Article  PubMed  Google Scholar 

  147. Dong, H.-J. et al. Risk of hepatitis B virus (HBV) reactivation in non-Hodgkin lymphoma patients receiving rituximab-chemotherapy: a meta-analysis. J. Clin. Virol. 57, 209–214 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Voican, C. S. et al. Hepatitis B virus reactivation in patients with solid tumors receiving systemic anticancer treatment. Ann. Oncol. 27, 2172–2184 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Coluccio, C. et al. Hepatitis B in patients with hematological diseases: an update. World J.Hepatol. 9, 1043 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Paul, S. et al. Role of surface antibody in hepatitis B reactivation in patients with resolved infection and hematologic malignancy: a meta-analysis. Hepatology 66, 379–388 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Cheung, K.-S., Seto, W.-K., Lai, C.-L. & Yuen, M.-F. Prevention and management of hepatitis B virus reactivation in cancer patients. Hepatol. Int. 10, 407–414 (2016).

    Article  PubMed  Google Scholar 

  152. Koziel, M. J. & Peters, M. G. Viral hepatitis in HIV infection. N. Engl. J. Med. 356, 1445–1454 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bhattacharya, D. et al. Isolated hepatitis B core antibody is associated with advanced hepatic fibrosis in HIV/HCV infection but not in HIV infection alone. J. Acquir. Immune Def. Syndr. 72, e14–e17 (2016).

    Article  Google Scholar 

  154. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV. AIDSinfohttps://aidsinfo.nih.gov/contentfiles/lvguidelines/adultandadolescentgl.pdf (2018)

  155. McMahon, M. A. et al. The HBV drug entecavir — effects on HIV-1 replication and resistance. N. Engl. J. Med. 356, 2614–2621 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pol, S. et al. The negative impact of HBV/HCV coinfection on cirrhosis and its consequences. Aliment. Pharmacol. Ther. 46, 1054–1060 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Bonacini, M., Louie, S., Bzowej, N. & Wohl, A. R. Survival in patients with HIV infection and viral hepatitis B or C. AIDS 18, 2039–2045 (2004).

    Article  PubMed  Google Scholar 

  158. Bersoff-Matcha, S. J. et al. Hepatitis B Virus reactivation associated with direct-acting antiviral therapy for chronic hepatitis C virus: a review of cases reported to the U. S. Food and Drug Administration Adverse Event Reporting System. Ann. Intern. Med. 166, 792 (2017).

    Article  PubMed  Google Scholar 

  159. Chen, G. et al. Hepatitis B reactivation in hepatitis B and C coinfected patients treated with antiviral agents: a systematic review and meta-analysis. Hepatology 66, 13–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Han, S. H. Extrahepatic manifestations of chronic hepatitis B. Clin. Liver Dis. 8, 403–418 (2004).

    Article  PubMed  Google Scholar 

  161. Orr, J. G. et al. Health related quality of life in people with advanced chronic liver disease. J. Hepatol. 61, 1158–1165 (2014).

    Article  PubMed  Google Scholar 

  162. Cullen, W., Kearney, Y. & Bury, G. Prevalence of fatigue in general practice. Ir. J. Med. Sci. 171, 10–12 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Evon, D. M. et al. Fatigue in patients with chronic hepatitis B living in North America: results from the Hepatitis B Research Network (HBRN). Dig. Dis. Sci. 61, 1186–1196 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hann, H.-W. et al. Symptomatology and health attitudes of chronic hepatitis B patients in the USA. J. Viral Hepat. 15, 42–51 (2008).

    PubMed  PubMed Central  Google Scholar 

  165. Chen, E.-Q. et al. Serum hepatitis B core-related antigen is a satisfactory surrogate marker of intrahepatic covalently closed circular DNA in chronic hepatitis B. Sci. Rep. 7, 173 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Wong, D. K.-H. et al. Hepatitis B virus core-related antigen as a surrogate marker for covalently closed circular DNA. Liver Int. 37, 995–1001 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Toyoda, H., Kumada, T. & Tada, T. Hepatitis B core-related antigen: a possible indicator for the termination of prophylactic nucleos(t)ide analogue therapy in patients after immunosuppressive therapy. Am. J. Gastroenterol. 112, 969–970 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Riveiro-Barciela, M. et al. Serum hepatitis B core-related antigen is more accurate than hepatitis B surface antigen to identify inactive carriers, regardless of hepatitis B virus genotype. Clin. Microbiol. Infect. 23, 860–867 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Zhang, Z.-Q. et al. Measurement of the hepatitis B core-related antigen is valuable for predicting the pathological status of liver tissues in chronic hepatitis B patients. J. Virol. Methods 235, 92–98 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Jung, K. S. et al. Clinical outcomes and predictors for relapse after cessation of oral antiviral treatment in chronic hepatitis B patients. J. Gastroenterol. 51, 830–839 (2015).

    Article  PubMed  CAS  Google Scholar 

  171. Honda, M. et al. Hepatitis B virus (HBV) core-related antigen during nucleos(t)ide analog therapy is related to intra-hepatic HBV replication and development of hepatocellular carcinoma. J. Infect. Dis. 213, 1096–1106 (2015).

    Article  PubMed  CAS  Google Scholar 

  172. Mak, L.-Y. et al. Review article: hepatitis B core-related antigen (HBcrAg): an emerging marker for chronic hepatitis B virus infection. Aliment. Pharmacol. Ther. 47, 43–54 (2018). This review summarizes the application of HBcrAg level in different scenarios of hepatitis B disease.

    Article  CAS  PubMed  Google Scholar 

  173. Lam, A. M. Hepatitis B virus capsid assembly modulators, but not nucleoside analogs, inhibit the production of extracellular pregenomic RNA and spliced RNA variants. Antimicrob. Agents Chemother. 61, e00680-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Giersch, K., Allweiss, L., Volz, T., Dandri, M. & Lütgehetmann, M. Serum HBV pgRNA as a clinical marker for cccDNA activity. J. Hepatol. 66, 460–462 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Block, T. M., Locarnini, S., McMahon, B. J., Rehermann, B. & Peters, M. G. Use of current and new endpoints in the evaluation of experimental hepatitis B therapeutics. Clin. Infect. Dis. 64, 1283–1288 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang, J. et al. Serum hepatitis B virus RNA is encapsidated pregenome RNA that may be associated with persistence of viral infection and rebound. J. Hepatol. 65, 700–710 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Lok, A. S., Zoulim, F., Dusheiko, G. & Ghany, M. G. Hepatitis B cure: From discovery to regulatory approval. Hepatology 66, 1296–1313 (2017).

    Article  PubMed  Google Scholar 

  178. Wooddell, C. I. et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci. Transl Med. 9, eaan0241 (2017). This is the first study showing the prevailing HBV integration in HBeAg-negative patients resulting in relatively suboptimal efficacy of short interfering RNA in knocking down virus transcriptions.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Yuen, M.-F. et al. RNA interference therapy with ARC-520 Injection results in long term off-therapy antigen reductions in treatment naïve, HBeAg positive and negative patients with chronic HBV. J. Hepatol. 68, S526 (2018).

    Article  Google Scholar 

  180. Mak, L.-Y., Wong, D. K.-H., Seto, W.-K., Lai, C.-L. & Yuen, M. F. Hepatitis B core protein as a therapeutic target. Expert Opin. Ther. Targets 21, 1153–1159 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Bazinet, M. et al. Safety and efficacy of REP 2139 and pegylated interferon alfa-2a for treatment-naive patients with chronic hepatitis B virus and hepatitis D virus co-infection (REP 301 and REP 301-LTF):a non-randomised, open-label, phase 2 trial. Lancet Gastroenterol. Hepatol. 2, 877–889 (2017).

    Article  PubMed  Google Scholar 

  182. Seto, W.-K. & Yuen, M.-F. New pharmacological approaches to a functional cure of hepatitis B. Clin.Liver Dis. 8, 83–88 (2016).

    Article  Google Scholar 

  183. Yuen, M.-F. et al. Dose response and safety of the daily, oral RIG-I agonist Inarigivir (SB 9200) in treatment naïve patients with chronic hepatitis B: results from the 25 mg and 50 mg cohorts in the ACHIEVE trial. J. Hepatol. 68, S509–S510 (2018).

    Article  Google Scholar 

  184. Roholm, K. & Iversen, P. Changes in the liver in acute epidemic hepatitis (catarrhal jaundice) based on 38 aspiration biopsies. Acta Pathol. Microbiol. Scand. 16, 427–442 (2010).

    Article  Google Scholar 

  185. Blumberg, B. S. A ‘new’ antigen in leukemia sera. JAMA 191, 541 (1965). This is the first publication reporting the discovery of Australia antigen.

    Article  CAS  PubMed  Google Scholar 

  186. Prince, A. M. An antigen detected in the blood during the incubation period of serum hepatitis. Proc. Natl Acad. Sci. USA 60, 814–821 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sutnick, A. I. Anicteric hepatitis associated with Australia antigen. JAMA 205, 670 (1968).

    Article  CAS  PubMed  Google Scholar 

  188. Krugman, S. Infectious hepatitis. Evidence for two distinctive clinical, epidemiological, and immunological types of infection. JAMA 200, 365–373 (1967).

    Article  CAS  PubMed  Google Scholar 

  189. Dane, D. S., Cameron, C. H. & Briggs, M. VIRUS-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet 295, 695–698 (1970). This is the first study to describe the morphology of HBV particles under electron microscopy.

    Article  Google Scholar 

  190. Maini, M. K. & Gehring, A. J. The role of innate immunity in the immunopathology and treatment of HBV infection. J. Hepatol. 64, S60–S70 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Doherty, D. G. et al. The human liver contains multiple populations of NK cells, T cells, and CD3+CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2, and Th0 cytokine secretion patterns. J. Immunol. 163, 2314–2321 (1999).

    CAS  PubMed  Google Scholar 

  192. Raimondo, G. et al. Statements from the Taormina expert meeting on occult hepatitis B virus infection. J. Hepatol. 49, 652–657 (2008).

    Article  PubMed  Google Scholar 

  193. Wagner, A. A. et al. Serological pattern ‘anti-hepatitis B core alone’ in HIV or hepatitis C virus-infected patients is not fully explained by hepatitis B surface antigen mutants. AIDS 18, 569–571 (2004).

    Article  PubMed  Google Scholar 

  194. Carimo, A. A. et al. First report of occult hepatitis B infection among ART naïve HIV seropositive individuals in Maputo, Mozambique. PLoS ONE 13, e0190775 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Bréchot, C. et al. Evidence that hepatitis B virus has a role in liver-cell carcinoma in alcoholic liver disease. N. Engl. J. Med. 306, 1384–1387 (1982).

    Article  PubMed  Google Scholar 

  196. Wong, D. K. H. et al. Occult hepatitis B infection and HBV replicative activity in patients with cryptogenic cause of hepatocellular carcinoma. Hepatology 54, 829–836 (2011). This study reports a high percentage of the presence of HBV in patients with HCC without obvious identifiable causes.

    Article  CAS  PubMed  Google Scholar 

  197. Yuen, M.-F. Need to improve awareness and management of hepatitis B reactivation in patients receiving immunosuppressive therapy. Hepatol. Int. 10, 102–105 (2016).

    Article  PubMed  Google Scholar 

  198. Hughes, S. A., Wedemeyer, H. & Harrison, P. M. Hepatitis delta virus. Lancet 378, 73–85 (2011).

    Article  PubMed  Google Scholar 

  199. Koh, C. et al. Oral prenylation inhibition with lonafarnib in chronic hepatitis D infection: a proof-of-concept randomised, double-blind, placebo-controlled phase 2A trial. Lancet Infect. Dis. 15, 1167–1174 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Yan, H., Liu, Y., Sui, J. & Li, W. NTCP opens the door for hepatitis B virus infection. Antiviral Res. 121, 24–30 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Vaillant, A. Nucleic acid polymers: Broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection. Antiviral Res. 133, 32–40 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Livingston, C., Ramakrishnan, D., Strubin, M., Fletcher, S. & Beran, R. Identifying and characterizing interplay between hepatitis B virus X protein and Smc5/6. Viruses 9, 69 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  203. You, C. R., Lee, S. W., Jang, J. W. & Yoon, S. K. Update on hepatitis B virus infection. World J. Gastroenterol. 20, 13293–13305 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lam, Y.-F. et al. Seven-year treatment outcome of entecavir in a real-world cohort: effects on clinical parameters, HBsAg and HBcrAg levels. Clin. Transl Gastroenterol. 8, e125 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Buti, M. et al. Seven-year efficacy and safety of treatment with tenofovir disoproxil fumarate for chronic hepatitis B virus infection. Dig. Dis. Sci. 60, 1457–1464 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Ogawa, E., Furusyo, N. & Nguyen, M. H. Tenofovir alafenamide in the treatment of chronic hepatitis B: design, development, and place in therapy. Drug Des. Devel. Ther. 11, 3197–3204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.-F.Y.); Epidemiology (D.-S.C.); Mechanisms/pathophysiology (S.A.L. and C.-L.L.); Diagnosis, screening and prevention (G.M.D.); Management (C.-L.L., D.T.Y.L., H.L.A.J. and M.G.P.); Quality of life (D.T.Y.L.); Outlook (M.-F.Y.); Overview of Primer (M.-F.Y.).

Corresponding author

Correspondence to Man-Fung Yuen.

Ethics declarations

Competing interests

M.-F.Y. has received research grants and/or served as an adviser for AbbVie, Arrowhead Pharmaceuticals, Biocartis, BristolMyers Squibb, Fujirebio, Gilead Sciences, GlaxoSmithKline, LF Asia Limited, Merck Sharp & Dohme, Novartis Pharmaceuticals, Roche Molecular Systems and Sysmex Corporation. D.S.C. has served as an adviser for Bristol-Myers Squibb and Merck Sharp & Dohme. G.M.D. has received research grants and/or served as an adviser for Abbott Laboratories, AbbVie, Bristol-Myers Squibb, Gilead Sciences, Janssen, Merck Sharp & Dohme and Transgene. H.L.A.J. has received grants and/or served as consultant for AbbVie, Arbutus, Bristol-Myers Squibb, Gilead Sciences, Janssen, Medimmune, Merck and Roche Molecular Systems. D.T.Y.L. has received research grants from Bristol-Myers Squibb, Gilead Sciences and Roche Molecular Systems and has served as consultant for AbbVie and Gilead Sciences. S.A.L. has served as an adviser and received consulting fees from Arrowhead Pharmaceuticals, AusBio Ltd., Gilead Sciences, Roche Molecular Systems and Janssen and has contract research grants with Arrowhead Pharmaceuticals, Gilead Sciences and Spring Bank Pharmaceuticals, Inc. M.G.P.'s spouse is employed at Hoffman-La Roche. C.-L.L. has received speaker fees from Bristol-Myers Squibb, Gilead Sciences and Novartis and is an advisory board member of Gilead Sciences.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuen, MF., Chen, DS., Dusheiko, G. et al. Hepatitis B virus infection. Nat Rev Dis Primers 4, 18035 (2018). https://doi.org/10.1038/nrdp.2018.35

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2018.35

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing