Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Therapeutic strategies for hepatitis B virus infection: towards a cure

An Author Correction to this article was published on 08 January 2020

This article has been updated

Abstract

Chronic hepatitis B virus (HBV) infection is a common cause of liver disease globally, with a disproportionately high burden in South-East Asia. Vaccines and nucleoside or nucleotide drugs are available and reduce both new infection rates and the development of liver disease in HBV-positive persons who adhere to long-term suppressive treatment. Although there is still considerable value in optimizing access to virus-suppressing regimens, the scientific and medical communities have embarked on a concerted journey to identify new antiviral drugs and immune interventions aimed at curing infection. The mechanisms and drug targets being explored are diverse; however, the field universally recognizes the importance of addressing the persistence of episomal covalently closed circular DNA, the existence of integrated HBV DNA in the host genome and the large antigen load, particularly of hepatitis B surface antigen. Another major challenge is to reinvigorate the exhausted immune response within the liver microenvironment. Ultimately, combinations of new drugs will be required to cure infection. Here we critically review the recent literature that describes the rationale for curative therapies and the resulting compounds that are being tested in clinical trials for hepatitis B.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Natural history of hepatitis B.
Fig. 2: The hepatitis B virus life cycle and novel therapeutic interventions.
Fig. 3: Therapeutic strategies targeting innate and adaptive immunity.

Change history

  • 08 January 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Nassal, M. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut 64, 1972–1984 (2015).

    CAS  PubMed  Google Scholar 

  2. Seeger, C. & Mason, W. S. Molecular biology of hepatitis B virus infection. Virology 479–480, 672–686 (2015).

    PubMed  Google Scholar 

  3. Fletcher, S. P. et al. Intrahepatic transcriptional signature associated with response to interferon-α treatment in the woodchuck model of chronic hepatitis B. PLOS Pathog. 11, e1005103 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. European Association for the Study of the Liver. EASL 2017 clinical practice guidelines on the management of hepatitis B virus infection. J. Hepatol. 67, 370–398 (2017).

    Google Scholar 

  5. Hou, J. et al. Guideline of prevention and treatment for chronic hepatitis B (2015 update). J. Clin. Transl Hepatol. 5, 297–318 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Durantel, D. & Zoulim, F. New antiviral targets for innovative treatment concepts for hepatitis B virus and hepatitis delta virus. J. Hepatol. 64, S117–S131 (2016).

    CAS  PubMed  Google Scholar 

  7. Liang, T. J. et al. Present and future therapies of hepatitis B: from discovery to cure. Hepatology 62, 1893–1908 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Terrault, N. A. et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 4, 1560–1599 (2018).

    Google Scholar 

  9. Lok, A. S., Zoulim, F., Dusheiko, G. & Ghany, M. G. Hepatitis B cure: from discovery to regulatory approval. J. Hepatol. 67, 847–861 (2017).

    PubMed  Google Scholar 

  10. World Health Organization. Global hepatitis report 2017 (WHO, 2017).

  11. Cooke, G. S. et al. Accelerating the elimination of viral hepatitis: a Lancet Gastroenterology & Hepatology commission. Lancet Gastroenterol. Hepatol. 4, 135–184 (2019).

    PubMed  Google Scholar 

  12. Yan, H. et al. Sodium taurocholate co-transporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1, e00049 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Li, M., Sohn, J. A. & Seeger, C. Distribution of hepatitis B virus nuclear DNA. J. Virol. 92, e01391-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Decorsière, A. et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 531, 386–389 (2016).

    PubMed  Google Scholar 

  15. Seeger, C., Ganem, D. & Varmus, H. E. Biochemical and genetic evidence for the hepatitis B virus replication strategy. Science 232, 477–484 (1986).

    CAS  PubMed  Google Scholar 

  16. Wang, J. et al. Serum hepatitis B virus RNA is encapsidated pregenome RNA that may be associated with persistence of viral infection and rebound. J. Hepatol. 65, 700–710 (2016).

    CAS  PubMed  Google Scholar 

  17. Bayliss, J. et al. Hepatitis B virus splicing is enhanced prior to development of hepatocellular carcinoma. J. Hepatol. 59, 1022–1028 (2013).

    CAS  PubMed  Google Scholar 

  18. Soussan, P. et al. Expression of defective hepatitis B virus particles derived from singly spliced RNA is related to liver disease. J. Infect. Dis. 198, 218–225 (2008).

    CAS  PubMed  Google Scholar 

  19. Werle-Lapostolle, B. et al. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology 126, 1750–1758 (2004).

    CAS  PubMed  Google Scholar 

  20. Boyd, A. et al. Decay of ccc-DNA marks persistence of intrahepatic viral DNA synthesis under tenofovir in HIV-HBV co-infected patients. J. Hepatol. 65, 683–691 (2016).

    CAS  PubMed  Google Scholar 

  21. Le Guerhier, F. et al. Characterization of the antiviral effect of 2′,3′-dideoxy-2′, 3′-didehydro-beta-L-5-fluorocytidine in the duck hepatitis B virus infection model. Antimicrob. Agents Chemother. 44, 111–122 (2000).

    PubMed  PubMed Central  Google Scholar 

  22. Burdette, D. et al. Evidence for the presence of infectious virus in the serum from chronic hepatitis B patients suppressed on nucleos(t)ide therapy with detectable but not quantifiable HBV DNA [abstract PS-150]. J. Hepatol. 70, e95 (2019).

    Google Scholar 

  23. Allweiss, L. et al. Proliferation of primary human hepatocytes and prevention of hepatitis B virus reinfection efficiently deplete nuclear cccDNA in vivo. Gut 67, 542–552 (2018).

    CAS  PubMed  Google Scholar 

  24. Schulze, A., Schieck, A., Ni, Y., Mier, W. & Urban, S. Fine mapping of pre-S sequence requirements for hepatitis B virus large envelope protein-mediated receptor interaction. J. Virol. 84, 1989–2000 (2010).

    CAS  PubMed  Google Scholar 

  25. Wedemeyer, H. et al. Final results of a multicenter, open-label phase 2 clinical trial (MYR203) to assess safety and efficacy of myrcludex B in cwith PEG-interferon Alpha 2a in patients with chronic HBV/HDV co-infection [abstract GS-13]. J. Hepatol. 70, e81 (2019).

    Google Scholar 

  26. Lucifora, J., Esser, K. & Protzer, U. Ezetimibe blocks hepatitis B virus infection after virus uptake into hepatocytes. Antiviral Res. 97, 195–197 (2013).

    CAS  PubMed  Google Scholar 

  27. Watashi, K. et al. Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter, sodium taurocholate cotransporting polypeptide (NTCP). Hepatology 59, 1726–1737 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shimura, S. et al. Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity. J. Hepatol. 66, 685–692 (2017).

    CAS  PubMed  Google Scholar 

  29. Li, D. et al. A potent human neutralizing antibody Fc-dependently reduces established HBV infections. eLife 6, 213 (2017).

    Google Scholar 

  30. Zhang, T. Y. et al. Prolonged suppression of HBV in mice by a novel antibody that targets a unique epitope on hepatitis B surface antigen. Gut 65, 658–671 (2016).

    CAS  PubMed  Google Scholar 

  31. Neumann, A. U. et al. Novel mechanism of antibodies to hepatitis B virus in blocking viral particle release from cells. Hepatology 52, 875–885 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Galun, E. et al. Clinical evaluation (phase I) of a combination of two human monoclonal antibodies to HBV: safety and antiviral properties. Hepatology 35, 673–679 (2002).

    CAS  PubMed  Google Scholar 

  33. Freitas, N., Cunha, C., Menne, S. & Gudima, S. O. Envelope proteins derived from naturally integrated hepatitis B virus DNA support assembly and release of infectious hepatitis delta virus particles. J. Virol. 88, 5742–5754 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Königer, C. et al. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. Proc. Natl Acad. Sci. USA 111, 4244–4253 (2014).

    Google Scholar 

  35. Long, Q. et al. The role of host DNA ligases in hepadnavirus covalently closed circular DNA formation. PLOS Pathog. 13, e1006784 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Maepa, M. B., Roelofse, I., Abdullah, E. & Patrick, A. Progress and prospects of anti-HBV gene therapy development. Int. J. Mol. Sci. 16, 17589–17610 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bloom, K., Maepa, M. B., Ely, A. & Arbuthnot, P. Gene therapy for chronic HBV — can we eliminate cccDNA? Genes. 9, 207 (2018).

    PubMed Central  Google Scholar 

  38. Seeger, C. & Sohn, J. A. Complete spectrum of CRISPR/Cas9-induced mutations on HBV cccDNA. Mol. Ther. 7, 1258–1266 (2016).

    Google Scholar 

  39. Wang, L. et al. A first-in-class orally available HBV cccDNA destabilizer ccc_R08 achieved sustainable HBsAg and HBV DNA suppression in the HBV circle mouse model through elimination of cccDNA-like molecules in the mouse liver [abstract PS-074]. J. Hepatol. 70, e48 (2019).

    Google Scholar 

  40. Seeger, C. Control of viral transcripts as a concept for future HBV therapies. Curr. Opin. Virol. 30, 18–23 (2018).

    CAS  PubMed  Google Scholar 

  41. Rivière, L. et al. HBx relieves chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase. J. Hepatol. 105, 1093–1102 (2015).

    Google Scholar 

  42. Belloni, L. et al. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc. Natl Acad. Sci. USA 106, 19975–19979 (2009).

    CAS  PubMed  Google Scholar 

  43. Lucifora, J. et al. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J. Hepatol. 55, 996–1003 (2011).

    CAS  PubMed  Google Scholar 

  44. Murphy, C. M. et al. Hepatitis B virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep. 16, 2846–2854 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sekiba, K. et al. Pevonedistat, a neuronal precursor cell-expressed developmentally down-regulated protein 8-activating enzyme inhibitor, is a potent inhibitor of hepatitis B virus. Hepatology 69, 1903–1915 (2019).

    CAS  PubMed  Google Scholar 

  46. Belloni, L. et al. IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J. Clin. Invest. 122, 529–537 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sekiba, K. et al. Inhibition of HBV transcription from cccDNA with nitazoxanide by targeting the HBx–DDB1 interaction. Cell. Mol. Gastroenterol. Hepatol. 7, 297–312 (2019).

    PubMed  Google Scholar 

  48. Chong, C. K. et al. Role of hepatitis B core protein in HBV transcription and recruitment of histone acetyltransferases to cccDNA minichromosome. Antiviral Res. 144, 1–7 (2017).

    CAS  PubMed  Google Scholar 

  49. Tropberger, P. et al. Mapping of histone modifications in episomal HBV cccDNA uncovers an unusual chromatin organization amenable to epigenetic manipulation. Proc. Natl Acad. Sci. USA 112, E5715–E5724 (2015).

    CAS  PubMed  Google Scholar 

  50. Cougot, D. et al. The hepatitis B virus X protein functionally interacts with CREB-binding protein/p300 in the regulation of CREB-mediated transcription. J. Biol. Chem. 282, 4277–4287 (2007).

    CAS  PubMed  Google Scholar 

  51. Gilmore, S. et al. Antiviral activity of GS-5801, a liver-targeted prodrug of a lysine demethylase 5 inhibitor, in a hepatitis B virus primary human hepatocyte infection model [abstract SAT-160]. J. Hepatol. 66, S690–S691 (2017).

    Google Scholar 

  52. Maepa, M. B., Roelofse, I., Ely, A. & Arbuthnot, P. Progress and prospects of anti-HBV gene therapy development. Int. J. Mol. Sci. 16, 17589–17610 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wooddell, C. I. et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci. Transl Med. 9, eaan0241 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Billioud, G. et al. In vivo reduction of hepatitis B virus antigenemia and viremia by antisense oligonucleotides. J. Hepatol. 64, 781–789 (2016).

    CAS  PubMed  Google Scholar 

  55. Yuen, M. F. et al. Short term RNA interference therapy in chronic hepatitis B using JNJ-3989 brings majority of patients to HBsAg < 100IUml threshold [abstract PS-080]. J. Hepatol. 70, e51 (2019).

    Google Scholar 

  56. Mueller, H. et al. A novel orally available small molecule that inhibits hepatitis B virus expression. J. Hepatol. 68, 412–420 (2018).

    CAS  PubMed  Google Scholar 

  57. Zhou, T. et al. HBsAg mRNA degradation induced by a dihydroquinolizinone compound depends on the HBV posttranscriptional regulatory element. Antiviral Res. 149, 191–201 (2018).

    CAS  PubMed  Google Scholar 

  58. Zhang, H. et al. Safety, pharmacokinetics and anti-viral efficacy of novel core protein allosteric modifier GLS4 in patients with chronic hepatitis B: interim results from a 48 weeks phase 2a study [abstract LB-13]. Hepatology 68, 1454A–1455A (2018).

  59. Gane, E. et al. RO7049389, a core protein allosteric modulator, demonstrates robust decline in HBV DNA and HBV RNA in chronic HBV infected patients [abstract]. J. Hepatol. 70, e491 (2019).

    Google Scholar 

  60. Katen, S. P., Chirapu, S. R., Finn, M. G. & Zlotnick, A. Trapping of hepatitis B virus capsid assembly intermediates by phenylpropenamide assembly accelerators. ACS Chem. Biol. 5, 1125–1136 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sari, O. et al. Synthesis of sulfamoylbenzamide derivatives as HBV capsid assembly effector. Eur. J. Med. Chem. 138, 407–421 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yuen, M. F. et al. Antiviral activity, safety, and pharmacokinetics of capsid assembly modulator NVR 3–778 in patients with chronic HBV infection. Gastroenterology 156, 1392–1403 (2019).

    CAS  PubMed  Google Scholar 

  63. Zoulim, F. et al. Safety, pharmacokinetics and antiviral activity of a novel hepatitis B virus (HBV) capsid assembly modulator, JNJ-56136379, in patients with chronic hepatitis B (CHB) [abstract]. Hepatology 68, 47A (2018).

    Google Scholar 

  64. Kakuda, T. et al. JNJ64530440, a novel capsid assembly modulator: single- and multiple-ascending dose safety, tolerability and pharmacokinetics in healthy volunteers [abstract FRI-180]. J. Hepatol. 70, e469 (2019).

    Google Scholar 

  65. Eley, T. et al. Single dose safety, tolerability, and pharmacokinetics of AB-423 in healthy volunteers from the ongoing single and multiple ascending dose study AB-423-001 [abstract]. Hepatology 66, A490 (2017).

    Google Scholar 

  66. Ma, X. et al. Interim safety and efficacy results of the ABI-H0731 phase 2a program exploring the combination of ABI-H0731 with Nuc therapy in treatment-naïve and treatment-suppressed chronic hepatitis B patients [abstract LBO-06]. J. Hepatol. 70, e130 (2019).

    Google Scholar 

  67. Lahlali, T. et al. Novel potent capsid assembly modulators regulate multiple steps of the hepatitis B virus life-cycle. Antimicrob. Agents Chemother. 62, e00835 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vaillant, A. Nucleic acid polymers: broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection. Antiviral Res. 133, 32–40 (2016).

    CAS  PubMed  Google Scholar 

  69. Bazinet, M. et al. Safety and efficacy of REP 2139 and pegylated interferon alfa-2a for treatment-naive patients with chronic hepatitis B virus and hepatitis D virus co-infection (REP 301 and REP 301-LTF): a non-randomised, open-label, phase 2 trial. Lancet Gastroenterol. Hepatol. 12, 877–889 (2017).

    Google Scholar 

  70. Bazinet, M. et al. Establishment of high rates of functional cure of HBeAg negative chronic HBV infection with REP 2139-Mg based combination therapy: ongoing follow-up results from the REP 401 study [abstract FRI-210]. J. Hepatol. 70, e486 (2019).

    Google Scholar 

  71. Zhou, K., Contag, C., Whitaker, E. & Terrault, N. Spontaneous loss of surface antigen among adults living with chronic hepatitis B virus infection: a systematic review and pooled meta-analyses. Lancet Gastroenterol. Hepatol. 4, 227–238 (2019).

    PubMed  Google Scholar 

  72. Bertoletti, A. & Ferrari, C. Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Gut 61, 1754–1764 (2012).

    CAS  PubMed  Google Scholar 

  73. Lau, G. K. et al. Clearance of hepatitis B surface antigen after bone marrow transplantation: role of adoptive immunity transfer. Hepatology 25, 1497–1501 (1997).

    CAS  PubMed  Google Scholar 

  74. Ilan, Y. et al. Adoptive transfer of immunity to hepatitis B virus after T cell-depleted allogeneic bone marrow transplantation. Hepatology 18, 246–252 (1993).

    CAS  PubMed  Google Scholar 

  75. Thimme, R. et al. CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 77, 68–76 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yeo, W. et al. Hepatitis B virus reactivation in lymphoma patients with prior resolved hepatitis B undergoing anticancer therapy with or without rituximab. J. Clin. Oncol. 27, 605–611 (2009).

    CAS  PubMed  Google Scholar 

  77. Lebossé, F. et al. Intrahepatic innate immune response pathways are downregulated in untreated chronic hepatitis B. J. Hepatol. 66, 897–909 (2017).

    PubMed  Google Scholar 

  78. Wieland, S., Thimme, R., Purcell, R. H. & Chisari, F. V. Genomic analysis of the host response to hepatitis B virus infection. Proc. Natl Acad. Sci. USA 101, 6669–6674 (2004).

    CAS  PubMed  Google Scholar 

  79. Mutz, P. et al. HBV bypasses the innate immune response and does not protect HCV from antiviral activity of interferon. Gastroenterology 154, 1791–1804 (2018).

    PubMed  Google Scholar 

  80. Suslov, A., Boldanova, T., Wang, X., Wieland, S. & Heim, M. H. Hepatitis B virus does not interfere with innate immune responses in the human liver. Gastroenterology 154, 1778–1790 (2018).

    CAS  PubMed  Google Scholar 

  81. Gehring, A. J. & Ann D’Angelo, J. Dissecting the dendritic cell controversy in chronic hepatitis B virus infection. Cell. Mol. Immunol. 12, 283–291 (2015).

    CAS  PubMed  Google Scholar 

  82. Maini, M. K. & Gehring, A. J. The role of innate immunity in the immunopathology and treatment of HBV infection. J. Hepatol. 64, S60–S70 (2016).

    CAS  PubMed  Google Scholar 

  83. Gehring, A. J. & Protzer, U. Targeting innate and adaptive immune responses to cure chronic HBV infection. 156, 325–337 (2019).

  84. Liaw, Y. F. et al. Impact of acute hepatitis C virus superinfection in patients with chronic hepatitis B virus infection. Gastroenterology 126, 1024–1029 (2004).

    PubMed  Google Scholar 

  85. Sagnelli, E. et al. HBV superinfection in hepatitis C virus chronic carriers, viral interaction, and clinical course. Hepatology 36, 1285–1291 (2002).

    PubMed  Google Scholar 

  86. Sato, S. et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 42, 123–132 (2015).

    CAS  PubMed  Google Scholar 

  87. Lucifora, J. et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science 343, 1221–1228 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. McClary, H., Koch, R., Chisari, F. V. & Guidotti, L. G. Relative sensitivity of hepatitis B virus and other hepatotropic viruses to the antiviral effects of cytokines. J. Virol. 74, 2255–2264 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Watashi, K. et al. Interleukin-1 and tumor necrosis factor-α trigger restriction of hepatitis B virus infection via a cytidine deaminase activation-induced cytidine deaminase (AID). J. Biol. Chem. 288, 31715–31727 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Puro, R. & Schneider, R. J. Tumor necrosis factor activates a conserved innate antiviral response to hepatitis B virus that destabilizes nucleocapsids and reduces nuclear viral DNA. J. Virol. 81, 7351–7362 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Suslov, A., Wieland, S. & Menne, S. Modulators of innate immunity as novel therapeutics for treatment of chronic hepatitis B. Curr. Opin. Virol. 30, 9–17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Maini, M. K. & Peppa, D. NK cells: a double-edged sword in chronic hepatitis B virus infection. Front. Immunol. 4, 57 (2013).

    PubMed  PubMed Central  Google Scholar 

  93. Thimme, R. & Dandri, M. Dissecting the divergent effects of interferon-alpha on immune cells: time to rethink combination therapy in chronic hepatitis B? J. Hepatol. 58, 205–209 (2013).

    PubMed  Google Scholar 

  94. Fisicaro, P. et al. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut 58, 974–982 (2009).

    CAS  PubMed  Google Scholar 

  95. Webster, G. J. et al. Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology 32, 1117–1124 (2000).

    CAS  PubMed  Google Scholar 

  96. Peppa, D. et al. Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J. Exp. Med. 210, 99–114 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bertoletti, A. & Gehring, A. J. Immune therapeutic strategies in chronic hepatitis B virus infection: virus or inflammation control? PLOS Pathog. 9, e1003784 (2013).

    PubMed  PubMed Central  Google Scholar 

  98. Zoulim, F., Luangsay, S. & Durantel, D. Targeting innate immunity: a new step in the development of combination therapy for chronic hepatitis B. Gastroenterology 144, 1342–1344 (2013).

    PubMed  Google Scholar 

  99. Peppa, D. et al. Interferon alpha induces sustained changes in NK cell responsiveness to hepatitis B viral load suppression in vivo. PLOS Pathog. 12, e1005788 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. Micco, L. et al. Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-alpha therapy of chronic hepatitis B. J. Hepatol. 58, 225–233 (2013).

    CAS  PubMed  Google Scholar 

  101. Xia, Y. et al. Interferon-γ and tumor necrosis factor-α produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis. Gastroenterology 150, 194–205 (2016).

    CAS  PubMed  Google Scholar 

  102. Chisari, F. V., Mason, W. S. & Seeger, C. Comment on “Specific and non-hepatotoxic degradation of nuclear hepatitis B virus cccDNA”. Science 344, 1237 (2014).

    CAS  PubMed  Google Scholar 

  103. Ji, C. et al. Targeted delivery of interferon-α to hepatitis B virus-infected cells using T cell receptor-like antibodies. Hepatology 56, 2027–2038 (2012).

    CAS  PubMed  Google Scholar 

  104. Guo, H. et al. Activation of pattern recognition receptor-mediated innate immunity inhibits the replication of hepatitis B virus in human hepatocyte-derived cells. J. Virol. 83, 847–858 (2009).

    CAS  PubMed  Google Scholar 

  105. Guo, F. et al. STING agonists induce an innate antiviral immune response against hepatitis B virus. Antimicrob. Agents Chemother. 59, 1273–1281 (2015).

    PubMed  PubMed Central  Google Scholar 

  106. Lanford, R. E. et al. GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology 144, 1508–1517 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Colledge, D. et al. Inarigivir is a novel selective inhibitor of the HBV replicase complex in vitro [abstract]. Hepatology 68, 229A (2018).

    Google Scholar 

  108. Yuen, M. F. et al. Ascending dose cohort study of inarigivir – a novel RIG I agonist in chronic HBV patients: final results of the ACHIEVE trial [abstract GS-12]. J. Hepatol. 70, e47–e48 (2019).

    Google Scholar 

  109. Menne, S. et al. Sustained efficacy and seroconversion with the Toll-like receptor 7 agonist GS-9620 in the Woodchuck model of chronic hepatitis B. J. Hepatol. 62, 1237–1245 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gane, E. J. et al. The oral Toll-like receptor-7 agonist GS-9620 in patients with chronic hepatitis B virus infection. J. Hepatol. 63, 320–328 (2015).

    CAS  PubMed  Google Scholar 

  111. Boni, C. et al. TLR7 agonist increases responses of hepatitis B virus-specific T cells and natural killer cells in patients with chronic hepatitis B treated with nucleos(t)ide analogues. Gastroenterology 154, 1764–1777 (2018).

    CAS  PubMed  Google Scholar 

  112. Jo, J. et al. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLOS Pathog. 10, e1004210 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Tang, X. Z. et al. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J. Immunol. 190, 3142–3152 (2013).

    CAS  PubMed  Google Scholar 

  114. Schurich, A. et al. The third signal cytokine IL-12 rescues the anti-viral function of exhausted HBV-specific CD8 T cells. PLOS Pathog. 9, e1003208 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Boni, C. et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J. Virol. 81, 4215–4225 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Fisicaro, P. et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 138, 682–693 (2010).

    CAS  PubMed  Google Scholar 

  117. Salimzadeh, L. et al. PD-1 blockade partially recovers dysfunctional virus-specific B cells in chronic hepatitis B infection. J. Clin. Invest. 128, 4573–4587 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Burton, A. R. et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J. Clin. Invest. 128, 4588–4603 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Verdon, D. et al. Immunological assessment of HBeAg-negative chronic hepatitis B patient responses following anti-PD-1 treatment [abstract 41]. Hepatology 66 (Suppl. 1), 23A (2017).

    Google Scholar 

  120. Michel, M. L., Pol, S., Brechot, C. & Tiollais, P. Immunotherapy of chronic hepatitis B by anti HBV vaccine: from present to future. Vaccine 19, 2395–2399 (2001).

    CAS  PubMed  Google Scholar 

  121. Mancini-Bourgine, M. et al. Induction or expansion of T cell responses by a hepatitis B DNA vaccine administered to chronic HBV carriers. Hepatology 40, 874–882 (2004).

    CAS  PubMed  Google Scholar 

  122. Vandepapelière, P. et al. Therapeutic vaccination of chronic hepatitis B patients with virus suppression by antiviral therapy: a randomized, controlled study of co-administration of HBsAg/AS02 candidate vaccine and lamivudine. Vaccine 25, 8585–8597 (2007).

    PubMed  Google Scholar 

  123. Xu, D. Z. et al. Results of a phase III clinical trial with an HBsAg-HBIG immunogenic complex therapeutic vaccine for chronic hepatitis B patients: experiences and findings. J. Hepatol. 59, 450–456 (2013).

    CAS  PubMed  Google Scholar 

  124. Godon, O. et al. Immunological and antiviral responses after therapeutic DNA immunization in chronic hepatitis B patients efficiently treated by analogues. Mol. Ther. 22, 675–684 (2013).

    PubMed  Google Scholar 

  125. Lok, A. S. et al. Randomized phase II study of GS-4774 as a therapeutic vaccine in virally suppressed patients with chronic hepatitis B. J. Hepatol. 65, 509–516 (2016).

    CAS  PubMed  Google Scholar 

  126. Boni, C. et al. Combined GS-4774 and tenofovir therapy can improve HBV-specific T-cell responses in patients with chronic hepatitis. Gastroenterology 157, 227–241 (2019).

    CAS  PubMed  Google Scholar 

  127. Liu, J. et al. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection. PLOS Pathog. 10, e1003856 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Wu, W. et al. Blockade of Tim-3 signaling restores the virus-specific CD8+ T cell response in patients with chronic hepatitis B. Eur. J. Immunol. 42, 1180–1191 (2012).

    CAS  PubMed  Google Scholar 

  129. Kurktschiev, P. D. et al. Dysfunctional CD8+ T cells in hepatitis B and C are characterized by a lack of antigen-specific T-bet induction. J. Exp. Med. 211, 167 (2014).

    Google Scholar 

  130. Bengsch, B., Martin, B. & Thimme, R. Restoration of HBV-specific CD8+ T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation. J. Hepatol. 61, 1212–1219 (2014).

    CAS  PubMed  Google Scholar 

  131. Schurich, A. et al. Distinct metabolic requirements of exhausted and functional virus-specific CD8 T cells in the same host. Cell Rep. 16, 1243–1252 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Fisicaro, P. et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat. Med. 23, 327–336 (2017).

    CAS  PubMed  Google Scholar 

  133. Kah, J. et al. Lymphocytes transiently expressing virus-specific T cell receptors reduce hepatitis B virus infection. J. Clin. Invest. 127, 3177–3188 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Koh, S. et al. Non-lytic lymphocytes engineered to express virus-specific T cell receptors limit HBV infection by activating APOBEC3. Gastroenterology 155, 180–193 (2018).

    CAS  PubMed  Google Scholar 

  135. Bohne, F. et al. T cells redirected against hepatitis B virus surface proteins eliminate infected hepatocytes. Gastroenterology 134, 239–247 (2008).

    CAS  PubMed  Google Scholar 

  136. Gehring, A. J. et al. Engineering virus-specific T cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. J. Hepatol. 55, 103–110 (2011).

    CAS  PubMed  Google Scholar 

  137. Krebs, K. et al. T cells expressing a chimeric antigen receptor that binds hepatitis B virus envelope proteins control virus replication in mice. Gastroenterology 145, 456–465 (2013).

    CAS  PubMed  Google Scholar 

  138. Qasim, W. et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. J. Hepatol. 62, 486–491 (2015).

    CAS  PubMed  Google Scholar 

  139. Kaiser, A. D. et al. Towards a commercial process for the manufacture of genetically modified T cells for therapy. Cancer Gene Ther. 22, 72–78 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Sastry, K. S. et al. Targeting hepatitis B virus-infected cells with a T cell receptor-like antibody. J. Virol. 85, 1935–1942 (2011).

    CAS  PubMed  Google Scholar 

  141. Oates, J., Hassan, N. J. & Jakobsen, B. K. ImmTACs for targeted cancer therapy: why, what, how, and which. Mol. Immunol. 67, 67–74 (2015).

    CAS  PubMed  Google Scholar 

  142. Yang, H. et al. Elimination of latently HIV-infected cells from antiretroviral therapy-suppressed subjects by engineered immune-mobilizing T cell receptors. Mol. Ther. 24, 1913–1925 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu, F. et al. Alpha-interferon suppresses hepadnavirus transcription by altering epigenetic modification of cccDNA minichromosomes. PLOS Pathog. 9, e1003613 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kim, K. A. et al. Hepatic SOCS3 expression is strongly associated with non-response to therapy and race in HCV and HCV/HIV infection. J. Hepatol. 50, 705–711 (2009).

    PubMed  PubMed Central  Google Scholar 

  145. Fletcher, S. P. et al. Transcriptomic analysis of the woodchuck model of chronic hepatitis B. Hepatology 11, 820–830 (2012).

    Google Scholar 

  146. Koeberlein, B. et al. Hepatitis B virus overexpresses suppressor of cytokine signaling-3 (SOCS3) thereby contributing to severity of inflammation in the liver. Virus Res. 148, 51–59 (2010).

    CAS  PubMed  Google Scholar 

  147. Tan-Garcia, A. et al. Intrahepatic CD206+ macrophages contribute to inflammation in advanced viral-related liver disease. J. Hepatol. 67, 490–500 (2017).

    CAS  PubMed  Google Scholar 

  148. Beyer, M. et al. Tumor-necrosis factor impairs CD4+ T cell–mediated immunological control in chronic viral infection. Nat. Immunol. 17, 593–603 (2016).

    CAS  PubMed  Google Scholar 

  149. Das, A. et al. Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. J. Exp. Med. 205, 2111–2124 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Sandalova, E. et al. Increased levels of arginase in patients with acute hepatitis B suppress antiviral T cells. Gastroenterology 143, 78–87 (2012).

    CAS  PubMed  Google Scholar 

  151. Pallett, L. J. et al. Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat. Med. 21, 591–600 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Guidotti, L. G. et al. Immunosurveillance of the liver by intravascular effector CD8+ T cells. Cell 161, 486–500 (2015).

    CAS  PubMed  Google Scholar 

  153. Op den Brouw, M. L. et al. Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus. Immunology 126, 280–289 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Woltman, A. M. et al. Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function. PLOS ONE 6, e15324 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Xu, Y. et al. HBsAg inhibits TLR9-mediated activation and IFN-α production in plasmacytoid dendritic cells. Mol. Immunol. 46, 2640–2646 (2009).

    CAS  PubMed  Google Scholar 

  156. Shi, B. et al. HBsAg inhibits IFN-α production in plasmacytoid dendritic cells through TNF-α and IL-10 induction in monocytes. PLOS ONE 7, e44900 (2017).

    Google Scholar 

  157. Visvanathan, K. et al. Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the pre-core protein. Hepatology 45, 102–110 (2006).

    Google Scholar 

  158. Wu, J. et al. Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology 49, 1132–1140 (2009).

    CAS  PubMed  Google Scholar 

  159. Martinet, J. et al. Altered functions of plasmacytoid dendritic cells and reduced cytolytic activity of natural killer cells in patients with chronic HBV infection. Gastroenterology 143, 1586–1596 (2012).

    CAS  PubMed  Google Scholar 

  160. Gehring, A. J. et al. Mobilizing monocytes to cross-present circulating viral antigen in chronic infection. J. Clin. Invest. 123, 3766–3776 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Andrade, B. B. et al. Hepatitis B infection is associated with asymptomatic malaria in the Brazilian Amazon. PLOS ONE 6, e19841 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Hong, M. et al. Trained immunity in newborn infants of HBV-infected mothers. Nat. Commun. 6, 6588 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Milich, D. R. et al. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc. Natl Acad. Sci. USA 87, 6599–6603 (1990).

    CAS  PubMed  Google Scholar 

  164. Park, J. J. et al. Hepatitis B virus—specific and global T-cell dysfunction in chronic hepatitis B. Gastroenterology 150, 684–695 (2015).

    PubMed  PubMed Central  Google Scholar 

  165. Schuch, A. et al. Phenotypic and functional differences of HBV core-specific versus HBV polymerase-specific CD8+ T cells in chronically HBV-infected patients with low viral load. Gut 68, 905–915 (2019).

    CAS  PubMed  Google Scholar 

  166. Hoogeveen, R. C. et al. Phenotype and function of HBV-specific T cells is determined by the targeted epitope in addition to the stage of infection. Gut 68, 893–904 (2019).

    CAS  PubMed  Google Scholar 

  167. Bertoletti, A. & Kennedy, P. T. The immune tolerant phase of chronic HBV infection: new perspectives on an old concept. Cell. Mol. Immunol. 12, 258–263 (2015).

    CAS  PubMed  Google Scholar 

  168. Dolman, G. E., Koffas, A., Mason, W. S. & Kennedy, P. T. Why, who and when to start treatment for chronic hepatitis B virus infection. Curr. Opin. Virol. 30, 39–47 (2018).

    PubMed  Google Scholar 

  169. Revill, P. A. et al. A global scientific strategy to cure hepatitis B. Lancet Gastroenterol. Hepatol. 4, 545–558 (2019).

    PubMed  PubMed Central  Google Scholar 

  170. Anderson, R. T. et al. Challenges, considerations and principles to guide trials of combination therapies for chronic HBV infection. Gastroenterology 156, 529–533 (2019).

    PubMed  Google Scholar 

  171. Zoulim, F. & Mason, W. S. Reasons to consider earlier treatment of chronic HBV infections. Gut 61, 333–336 (2012).

    CAS  PubMed  Google Scholar 

  172. Armas, D. et al. A phase I single ascending dose study of CRV431 [abstract]. J. Hepatol. 70, e464 (2019).

    Google Scholar 

  173. Agarwal, K. et al. Bi-weekly dosing of ARB-1467 LNP siRNA in HBeAg negative, virally suppressed patients with chronic HBV infection leads to deeper declines in HBsAg and potential association with IL28b [abstract]. Hepatology 66, LB17 (2017).

    Google Scholar 

  174. Han, K. et al. Safety, tolerability and pharmacokinetics of GSK3389404, an antisense oligonucleotide for the treatment of chronic hepatitis B (CHB) infection: a randomized, double-blind, placebo-controlled, dose-escalation, first time in human study [abstract]. Hepatology 66, A490 (2017).

    Google Scholar 

  175. Arbutus Biopharma. Press release: Arbutus reports first quarter 2019 financial results and provides corporate update. Arbutus Biopharma https://investor.arbutusbio.com/news-releases/news-release-details/arbutus-reports-first-quarter-2019-financial-results-and (2019).

  176. Gane, E. et al. TLR7 agonist RO7020531 triggers immune activation after multiple doses in chronic hepatitis B patients [abstract]. Hepatology 68, LB–33 (2018).

    Google Scholar 

  177. Reyes, M. et al. First in human study of GS-9688, an oral Toll-like receptor 8 (TLR8) agonist, in healthy volunteers: assessment of safety, tolerability, pharmacokinetics, pharmacodynamics and food effect [abstract]. Hepatology 68, 233A (2018).

    Google Scholar 

  178. Fournier, C. et al. Safety and immunogenicity of single and multiple injections of the therapeutic vaccine TG1050 in NUC-suppressed chronic hepatitis B (CHB) patients: unblinded analysis of a double-blind, placebo-controlled phase 1b study [abstract]. Hepatology 68, 252A (2018).

    Google Scholar 

  179. Hu, Y. et al. A phase 1 clinical trial of therapeutic vaccine t101 in chronic hepatitis b patients: a randomized, double-blind, placebo controlled, single and multiple injections, dose escalation study [abstract]. J. Hepatol. 70, e153 (2019).

    Google Scholar 

  180. Lim, Y. S. et al. A phase 1b evaluation of HepTcell HBV-specific immunotherapy in nuc-controlled, eAg negative chronic HBV infection [abstract]. J. Hepatol. 70, e50 (2019).

    Google Scholar 

  181. Wang, F. S., Fan, J. G., Zhang, Z., Gao, B. & Wang, H. Y. The global burden of liver disease: the major impact of China. Hepatology 60, 2099–2108 (2014).

    PubMed  PubMed Central  Google Scholar 

  182. Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study. Lancet 380, 2095–2128 (2010).

    Google Scholar 

  183. Xia, G. ‑L. et al. Prevalence of hepatitis B and C virus infections in the general Chinese population. Results from a nationwide cross-sectional seroepidemiologic study of hepatitis A, B, C, D, and E virus infections in China, 1992. Int. Hepatol. Comm. 5, 62–73 (1996).

    Google Scholar 

  184. Liang, X. et al. Evaluation of the impact of hepatitis B vaccination among children born during 1992–2005 in China. J. Infect. Dis. 200, 39–47 (2009).

    PubMed  Google Scholar 

  185. Ott, J. J., Stevens, G. A., Groeger, J. & Wiersma, S. T. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine 30, 2212–2219 (2012).

    CAS  PubMed  Google Scholar 

  186. Velkov, S., Ott, J. J., Protzer, U. & Michler, T. The global hepatitis B virus genotype distribution approximated from available genotyping data. Genes 9, 495 (2018).

    PubMed Central  Google Scholar 

  187. Rajoriya, N., Combet, C., Zoulim, F. & Janssen, H. L. A. How viral genetic variants and genotypes influence disease and treatment outcome of chronic hepatitis B. Time for an individualized approach? J. Hepatol. 67, 1281–1297 (2017).

    PubMed  Google Scholar 

  188. Testoni, B., Levrero, M. & Zoulim, F. Challenges to a cure for HBV infection. Semin. Liver Dis. 37, 231–242 (2017).

    PubMed  Google Scholar 

  189. Cornberg, M. et al. The role of quantitative hepatitis B surface antigen revisited. J. Hepatol. 66, 398–411 (2017).

    CAS  PubMed  Google Scholar 

  190. Butler, E. K. et al. Hepatitis B virus serum DNA and RNA Levels in nucleos(t)ide analog-treated or untreated patients during chronic and acute infection. Hepatology 68, 2106–2117 (2018).

    CAS  PubMed  Google Scholar 

  191. Liu, S. et al. RNA: a new potential biomarker for chronic hepatitis B virus infection. Hepatology 69, 1816–1827 (2019).

    PubMed  Google Scholar 

  192. Honda, M. et al. Hepatitis B virus (HBV) core-related antigen during nucleos(t)ide analog therapy is related to intra-hepatic HBV replication and development of hepatocellular carcinoma. J. Infect. Dis. 213, 1096–1106 (2016).

    CAS  PubMed  Google Scholar 

  193. Testoni, B. et al. Serum hepatitis B core-related antigen (HBcrAg) correlates with covalently closed circular DNA transcriptional activity in chronic hepatitis B patients. J. Hepatol. 70, 615–625 (2019).

    CAS  PubMed  Google Scholar 

  194. Jilbert, A. R., Miller, D. S., Scougall, C. A., Turnbull, H. & Burrell, C. J. Kinetics of duck hepatitis B virus infection following low dose virus inoculation: one virus DNA genome is infectious in neonatal ducks. Virology 226, 338–345 (1996).

    CAS  PubMed  Google Scholar 

  195. Chen, X. et al. A novel quantitative microarray antibody capture assay identifies an extremely high hepatitis delta virus prevalence among hepatitis B virus-infected mongolians. Hepatology 66, 1739–1749 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Liao, B. et al. Epidemiological, clinical and histological characteristics of HBV/HDV co-infection: a retrospective cross-sectional study in Guangdong. PLOS ONE 9, e115888 (2014).

    PubMed  PubMed Central  Google Scholar 

  197. Lempp, F. A., Ni, Y. & Urban, S. Hepatitis delta virus: insights into a peculiar pathogen and novel treatment options. Nat. Rev. Gastroenterol. Hepatol. 13, 580–589 (2016).

    CAS  PubMed  Google Scholar 

  198. Yurdaydin, C. et al. Optimizing lonafarnib treatment for the management of chronic delta hepatitis: the LOWR HDV-1 study. Hepatology 67, 1224–1236 (2018).

    CAS  PubMed  Google Scholar 

  199. US Food and Drug Administration. Codevelopment of two or more new investigational drugs for use in combination. FDA https://www.fda.gov/regulatory-information/search-fda-guidance-documents/codevelopment-two-or-more-new-investigational-drugs-use-combination (2013).

  200. Lempp, F. A. et al. Sodium taurocholate co-transporting polypeptide is the limiting host factor of hepatitis B virus infection in macaque and pig hepatocytes. Hepatology 66, 703–716 (2017).

    CAS  PubMed  Google Scholar 

  201. Dandri, M. & Petersen, J. Animal models of HBV infection. Best Pract. Res. Clin. Gastroenterol. 31, 273–279 (2017).

    PubMed  Google Scholar 

  202. Strick-Marchand, H. et al. A novel mouse model for stable engraftment of a human immune system and human hepatocytes. PLOS ONE 10, e0119820 (2015).

    PubMed  PubMed Central  Google Scholar 

  203. Cote, P. J. et al. Effects of age and viral determinants on chronicity as an outcome of experimental woodchuck hepatitis virus infection. Hepatology 31, 190–200 (2000).

    CAS  PubMed  Google Scholar 

  204. Burwitz, B. J. et al. Hepatocytic expression of human sodium-taurocholate cotransporting polypeptide enables hepatitis B virus infection of macaques. Nat. Commun. 8, 2146 (2017).

    PubMed  PubMed Central  Google Scholar 

  205. Xu, D. et al. Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. J. Immunol. 177, 739–747 (2006).

    CAS  PubMed  Google Scholar 

  206. Liang, X. et al. Reprint of: Epidemiological serosurvey of hepatitis B in China — declining HBV prevalence due to hepatitis B vaccination. Vaccine 31, J21–J28 (2013).

    PubMed  Google Scholar 

  207. Liu, J. et al. Seroepidemiology of hepatitis B virus infection in 2 million men aged 21–49 years in rural China: a population-based, cross-sectional study. Lancet Infect. Dis. 16, 80–86 (2016).

    PubMed  Google Scholar 

  208. Cui, F. et al. Prevention of chronic hepatitis B after 3 decades of escalating vaccination policy, China. Emerging Infect. Dis. 23, 765 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory C. Fanning.

Ethics declarations

Competing interests

G.C.F. is an employee of Janssen Pharmaceuticals. A.B. participates in advisory boards/consultancy on hepatitis B virus (HBV) immune therapy for Gilead, Janssen, Vir, Jiangsu Simcere Pharmaceutical and Humabs BioMed; is the scientific founder of Lion TCR Pte. Ltd.; is an advisor for Arbutus, Assembly, Gilead, Janssen, Myr Pharma, Roche, Transgene and Vir Biotech; and has received research grants from Evotec and Roche. F.Z. participates in advisory boards on HBV for AbbVie, Aligos, Gilead, Janssen, Myr Pharma, Spring Bank, Roche, Transgene and Vir Biotech; and has received research grants from Evotec and Roche. J.H. participates in advisory boards/consultancy for AbbVie, Arbutus, Bristol–Myers Squibb, Gilead Sciences, Johnson & Johnson and Roche, and has received grants from Bristol–Myers Squibb and Johnson & Johnson.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanning, G.C., Zoulim, F., Hou, J. et al. Therapeutic strategies for hepatitis B virus infection: towards a cure. Nat Rev Drug Discov 18, 827–844 (2019). https://doi.org/10.1038/s41573-019-0037-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-019-0037-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research