Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mitochondrial diseases

Abstract

Mitochondrial diseases are a group of genetic disorders that are characterized by defects in oxidative phosphorylation and caused by mutations in genes in the nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) that encode structural mitochondrial proteins or proteins involved in mitochondrial function. Mitochondrial diseases are the most common group of inherited metabolic disorders and are among the most common forms of inherited neurological disorders. One of the challenges of mitochondrial diseases is the marked clinical variation seen in patients, which can delay diagnosis. However, advances in next-generation sequencing techniques have substantially improved diagnosis, particularly in children. Establishing a genetic diagnosis allows patients with mitochondrial diseases to have reproductive options, but this is more challenging for women with pathogenetic mtDNA mutations that are strictly maternally inherited. Recent advances in in vitro fertilization techniques, including mitochondrial donation, will offer a better reproductive choice for these women in the future. The treatment of patients with mitochondrial diseases remains a challenge, but guidelines are available to manage the complications of disease. Moreover, an increasing number of therapeutic options are being considered, and with the development of large cohorts of patients and biomarkers, several clinical trials are in progress.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic representation of oxidative phosphorylation.
Figure 2: Human mitochondrial genome.
Figure 3: Genes associated with human mitochondrial diseases and their role in mitochondrial function.
Figure 4: Clinical presentations of mitochondrial diseases.
Figure 5: Brain MRI of patients with Leigh syndrome or mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes syndrome.
Figure 6: Diagnostic algorithm for suspected mitochondrial diseases.
Figure 7: Heteroplasmy causes mitochondrial bottleneck during oogenesis.
Figure 8: Reproductive options for women with mitochondrial DNA mutations.

References

  1. 1

    Duchen, M. R. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol. Aspects Med. 25, 365–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Hopper, R. K. et al. Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium. Biochemistry 45, 2524–2536 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Hughes, D. A., Jastroch, M., Stoneking, M. & Klingenspor, M. Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis. BMC Evol. Biol. 9, 4 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Dolezal, P., Likic, V., Tachezy, J. & Lithgow, T. Evolution of the molecular machines for protein import into mitochondria. Science 313, 314–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Nunnari, J. & Suomalainen, A. Mitochondria: in sickness and in health. Cell 148, 1145–1159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    McFarland, R., Taylor, R. W. & Turnbull, D. M. A neurological perspective on mitochondrial disease. Lancet Neurol. 9, 829–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Hakonen, A. H. et al. Abundance of the POLG disease mutations in Europe, Australia, New Zealand, and the United States explained by single ancient European founders. Eur. J. Hum. Genet. 15, 779–783 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Lake, N. J., Compton, A. G., Rahman, S. & Thorburn, D. R. Leigh syndrome: one disorder, more than 75 monogenic causes. Ann. Neurol. 79, 190–203 (2015). This paper details the genetic, biochemical, clinical, metabolic and neuroradiological heterogeneity of Leigh syndrome, the most common childhood presentation of mitochondrial diseases, that comprises >75 monogenic disorders.

    Article  PubMed  Google Scholar 

  9. 9

    Skladal, D., Halliday, J. & Thorburn, D. R. Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 126, 1905–1912 (2003).

    Article  PubMed  Google Scholar 

  10. 10

    Ryan, E. et al. Mitochondrial cytopathies, phenotypic heterogeneity and a high incidence. Ir. Med. J. 99, 262–264 (2006).

    CAS  PubMed  Google Scholar 

  11. 11

    Gorman, G. S. et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77, 753–759 (2015). This paper presents the most up-to-date, detailed estimates of the prevalence of adult mitochondrial diseases, and showed that the prevalence of mitochondrial diseases caused by mutations in mtDNA is estimated at 9.6 cases per 100,000 individuals and the prevalence of mitochondrial diseases caused by mutations in nDNA is estimated at 2.9 cases per 100,000 individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Manwaring, N. et al. Population prevalence of the MELAS A3243G mutation. Mitochondrion 7, 230–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Elliott, H. R., Samuels, D. C., Eden, J. A., Relton, C. L. & Chinnery, P. F. Pathogenic mitochondrial DNA mutations are common in the general population. Am. J. Hum. Genet. 83, 254–260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Thorburn, D. R. Mitochondrial disorders: prevalence, myths and advances. J. Inherit. Metab. Dis. 27, 349–362 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Lebon, S. et al. Recurrent de novo mitochondrial DNA mutations in respiratory chain deficiency. J. Med. Genet. 40, 896–899 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Calvo, S. E. & Mootha, V. K. The mitochondrial proteome and human disease. Annu. Rev. Genomics Hum. Genet. 11, 25–44 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  Google Scholar 

  20. 20

    Andrews, R. M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Richter, R. et al. Translation termination in human mitochondrial ribosomes. Biochem. Soc. Trans. 38, 1523–1526 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Koopman, W. J., Willems, P. H. & Smeitink, J. A. Monogenic mitochondrial disorders. N. Engl. J. Med. 366, 1132–1141 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Chinnery, P. F. Mitochondrial disorders overview. GeneReviewshttps://www.ncbi.nlm.nih.gov/books/NBK1224/ (updated 14 Aug 2014).

  24. 24

    Kornblum, C. et al. Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat. Genet. 45, 214–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Zheng, L. et al. Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. Mol. Cell 32, 325–336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Kazak, L., Reyes, A. & Holt, I. J. Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat. Rev. Mol. Cell Biol. 13, 659–671 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Ashley, N. et al. Defects in maintenance of mitochondrial DNA are associated with intramitochondrial nucleotide imbalances. Hum. Mol. Genet. 16, 1400–1411 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Moraes, C. T. et al. mtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. Am. J. Hum. Genet. 48, 492–501 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Nishigaki, Y., Martí, R., Copeland, W. C. & Hirano, M Site-specific somatic mitochondrial DNA point mutations in patients with thymidine phosphorylase deficiency. J. Clin. Invest. 111, 1913–1921 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Lightowlers, R. N., Taylor, R. W. & Turnbull, D. M. Mutations causing mitochondrial disease: what is new and what challenges remain? Science 349, 1494–1499 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Nesbitt, V. et al. The UK MRC Mitochondrial Disease Patient Cohort Study: clinical phenotypes associated with the m. 243A>G mutation — implications for diagnosis and management. J. Neurol. Neurosurg. Psychiatry 84, 936–938 (2013).

    Article  PubMed  Google Scholar 

  32. 32

    Chinnery, P. F., Elliott, H. R., Hudson, G., Samuels, D. C. & Relton, C. L. Epigenetics, epidemiology and mitochondrial DNA diseases. Int. J. Epidemiol. 41, 177–187 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Giordano, C. et al. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy. Brain 137, 335–353 (2014).

    Article  PubMed  Google Scholar 

  34. 34

    Bianco, A. et al. Mitochondrial DNA copy number differentiates the Leber's hereditary optic neuropathy affected individuals from the unaffected mutation carriers. Brain 139, e1 (2016).

    Article  PubMed  Google Scholar 

  35. 35

    Grady, J. P. et al. Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain 137, 323–334 (2014).

    Article  PubMed  Google Scholar 

  36. 36

    Brito, S. et al. Long-term survival in a child with severe encephalopathy, multiple respiratory chain deficiency and GFM1 mutations. Front. Genet. 6, 102 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. 37

    Horvath, R. et al. Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain 132, 3165–3174 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Scaglia, F. et al. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 114, 925–931 (2004).

    Article  PubMed  Google Scholar 

  39. 39

    Ferreira, M. et al. Progressive cavitating leukoencephalopathy associated with respiratory chain complex I deficiency and a novel mutation in NDUFS1. Neurogenetics 12, 9–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Uluc, K. et al. Leukoencephalopathy with brain stem and spinal cord involvement and high lactate: a genetically proven case with distinct MRI findings. J. Neurol. Sci. 273, 118–122 (2008).

    Article  PubMed  Google Scholar 

  41. 41

    Al-Hassnan, Z. N. et al. ISCA2 mutation causes infantile neurodegenerative mitochondrial disorder. J. Med. Genet. 52, 186–194 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Janer, A. et al. RMND1 deficiency associated with neonatal lactic acidosis, infantile onset renal failure, deafness, and multiorgan involvement. Eur. J. Hum. Genet. 23, 1301–1307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Bourdon, A. et al. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat. Genet. 39, 776–780 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Seidowsky, A. et al. Renal involvement in MELAS syndrome — a series of 5 cases and review of the literature. Clin. Nephrol. 80, 456–463 (2013).

    Article  PubMed  Google Scholar 

  45. 45

    Haghighi, A. et al. Sengers syndrome: six novel AGK mutations in seven new families and review of the phenotypic and mutational spectrum of 29 patients. Orphanet J. Rare Dis. 9, 119 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Ghezzi, D. et al. Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am. J. Hum. Genet. 90, 1079–1087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Gotz, A. et al. Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am. J. Hum. Genet. 88, 635–642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Wahbi, K. et al. Cardiac involvement is frequent in patients with the m. 8344A>G mutation of mitochondrial DNA. Neurology 74, 674–677 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Wedatilake, Y. et al. SURF1 deficiency: a multi-centre natural history study. Orphanet Rare Dis. 8, 96 (2013).

    Article  Google Scholar 

  50. 50

    Huemer, M. et al. Clinical, morphological, biochemical, imaging and outcome parameters in 21 individuals with mitochondrial maintenance defect related to FBXL4 mutations. J. Inherit. Metab. Dis. 38, 905–914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Yelverton, J. C. et al. The clinical and audiologic features of hearing loss due to mitochondrial mutations. Otolaryngol. Head Neck Surg. 148, 1017–1022 (2013).

    Article  PubMed  Google Scholar 

  52. 52

    Luo, L. F., Hou, C. C. & Yang, W. X. Nuclear factors: roles related to mitochondrial deafness. Gene 520, 79–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Leigh, D. Subacute necrotizing encephalomyelopathy in an infant. J. Neurol. Neurosurg. Psychiatry 14, 216–221 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Bonfante, E., Koenig, M. K., Adejumo, R. B., Perinjelil, V. & Riascos, R. F. The neuroimaging of Leigh syndrome: case series and review of the literature. Pediatr. Radiol. 46, 443–451 (2016).

    Article  PubMed  Google Scholar 

  55. 55

    Saneto, R. P., Cohen, B. H., Copeland, W. C. & Naviaux, R. K. Alpers–Huttenlocher syndrome. Pediatr. Neurol. 48, 167–178 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Tzoulis, C. et al. The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases. Brain 129, 1685–1692 (2006).

    Article  PubMed  Google Scholar 

  57. 57

    Cohen, B. H., Chinnery, P. F. & Copeland, W. C. POLG-related disorders. GeneReviewshttps://www.ncbi.nlm.nih.gov/books/NBK26471/ (updated 18 Dec 2014).

  58. 58

    Naviaux, R. K. & Nguyen, K. V. POLG mutations associated with Alpers' syndrome and mitochondrial DNA depletion. Ann. Neurol. 55, 706–712 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Sofou, K. et al. Whole exome sequencing reveals mutations in NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase and prolyl-tRNA synthetase, in patients with Alpers syndrome. Mol. Genet. Genomic Med. 3, 59–68 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Elo, J. M. et al. Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy. Hum. Mol. Genet. 21, 4521–4529 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Rötig, A., Bourgeron, T., Chretien, D., Rustin, P. & Munnich, A. Spectrum of mitochondrial DNA rearrangements in the Pearson marrow–pancreas syndrome. Hum. Mol. Genet. 4, 1327–1330 (1995).

    Article  PubMed  Google Scholar 

  62. 62

    Rotig, A. et al. Mitochondrial DNA deletion in Pearson's marrow/pancreas syndrome. Lancet 1, 902–903 (1989).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Nesbitt, V., Bartlett, K., Taylor, R. W. & McFarland, R. Congenital lactic acidosis and mitochondrial disease — when to suspect and how to manage. J. Neonatal Perinatal Med. 4, 179–187 (2011).

    Google Scholar 

  64. 64

    Mancuso, M. et al. Mitochondrial DNA depletion: mutations in thymidine kinase gene with myopathy and SMA. Neurology 59, 1197–1202 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Wortmann, S. B. et al. Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat. Genet. 44, 797–802 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Mayr, J. A. et al. Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome. Am. J. Hum. Genet. 90, 314–320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Leber, T. Uber hereditare und congenital-angelegte Sehnervenleiden. Graefes Arch. Ophthalmol. 17, 249–291 (in German) (1871).

    Article  Google Scholar 

  68. 68

    Macmillan, C. et al. Pedigree analysis of French Canadian families with T14484C Leber's hereditary optic neuropathy. Neurology 50, 417–422 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Yu-Wai-Man, P., Griffiths, P. G., Hudson, G. & Chinnery, P. F. Inherited mitochondrial optic neuropathies. J. Med. Genet. 46, 145–158 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Matthews, L. et al. MRI in Leber's hereditary optic neuropathy: the relationship to multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 86, 537–542 (2015).

    Article  PubMed  Google Scholar 

  71. 71

    Hudson, G. et al. Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background. Am. J. Hum. Genet. 81, 228–233 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Kirkman, M. A. et al. Gene–environment interactions in Leber hereditary optic neuropathy. Brain 132, 2317–2326 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Kearns, T. P. & Sayre, G. P. Retinitis pigmentosa, external ophthalmophegia, and complete heart block: unusual syndrome with histologic study in one of two cases. AMA Arch. Ophthalmol. 60, 280–289 (1958).

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Holt, I. J., Harding, A. E. & Morgan-Hughes, J. A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331, 717–719 (1988). This paper describes the first pathogenetic mtDNA mutation.

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Pavlakis, S. G., Phillips, P. C., DiMauro, S., De Vivo, D. C. & Rowland, L. P. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann. Neurol. 16, 481–488 (1984).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Goto, Y.-I., Nonaka, I. & Horai, S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348, 651–653 (1990). This paper was the first to observe the association of a heteroplasmic point mutation in the tRNALeu(UUR) gene in association with MELAS syndrome while devising a simple molecular diagnostic test.

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Schon, E. A., DiMauro, S. & Hirano, M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 13, 878–890 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    DiMauro, S. & Hirano, M. MERRF. GeneReviewshttps://www.ncbi.nlm.nih.gov/books/NBK1520/?report=printable (updated 29 Jan 2015).

  79. 79

    Shoffner, J. M. et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61, 931–937 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Ortiz, R. G. et al. Variable retinal and neurologic manifestations in patients harboring the mitochondrial DNA 8993 mutation. Arch. Ophthalmol. 111, 1525–1530 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Rantamaki, M. T., Soini, H. K., Finnila, S. M., Majamaa, K. & Udd, B. Adult-onset ataxia and polyneuropathy caused by mitochondrial 8993T→C mutation. Ann. Neurol. 58, 337–340 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Tatuch, Y. et al. Heteroplasmic mtDNA mutation (T----G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am. J. Hum. Genet. 50, 852–858 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    White, S. L. et al. Genetic counseling and prenatal diagnosis for the mitochondrial DNA mutations at nucleotide 8993. Am. J. Hum. Genet. 65, 474–482 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Sommerville, E. W., Chinnery, P. F., Gorman, G. S. & Taylor, R. W. Adult-onset Mendelian PEO associated with mitochondrial disease. J. Neuromuscul. Dis. 1, 119–133 (2014).

    PubMed  Google Scholar 

  85. 85

    Hudson, G. et al. Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain 131, 329–337 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86

    Verhoeven, K. et al. MFN2 mutation distribution and genotype/phenotype correlation in Charcot–Marie–Tooth type 2. Brain 129, 2093–2102 (2006).

    Article  PubMed  Google Scholar 

  87. 87

    Ishihara, N., Fujita, Y., Oka, T. & Mihara, K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25, 2966–2977 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Whittaker, R. G. et al. Urine heteroplasmy is the best predictor of clinical outcome in the m. 3243A>G mtDNA mutation. Neurology 72, 568–569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Greaves, L. C., Reeve, A. K., Taylor, R. W. & Turnbull, D. M. Mitochondrial DNA and disease. J. Pathol. 226, 274–286 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Rocha, M. C. et al. A novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: understanding mechanisms and improving diagnosis. Sci. Rep. 5, 15037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Shaham, O. et al. A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells. Proc. Natl Acad. Sci. USA 107, 1571–1575 (2010).

    Article  PubMed  Google Scholar 

  92. 92

    Haas, R. H. et al. Mitochondrial disease: a practical approach for primary care physicians. Pediatrics 120, 1326–1333 (2007).

    Article  PubMed  Google Scholar 

  93. 93

    Nishino, I., Spinazzola, A. & Hirano, M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283, 689–692 (1999). This paper was the first to elucidate the genetic basis of MNGIE syndrome, an autosomal recessive human disease associated with multiple deletions of skeletal muscle mtDNA, by identifying homozygous and compound-heterozygous mutations in the gene encoding thymidine phosphorylase.

    Article  CAS  PubMed  Google Scholar 

  94. 94

    Suomalainen, A. et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 10, 806–818 (2011). This paper reports on the identification of biomarkers for human mitochondrial diseases, including FGF21, as a potential first-line diagnostic test.

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Davis, R. L. et al. Fibroblast growth factor 21 is a sensitive biomarker of mitochondrial disease. Neurology 81, 1819–1826 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Yatsuga, S. et al. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann. Neurol. 78, 814–823 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Honzik, T. et al. Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation. Arch. Dis. Child. 95, 296–301 (2010).

    Article  PubMed  Google Scholar 

  98. 98

    Wortmann, S. B. et al. 3-Methylglutaconic aciduria — lessons from 50 genes and 977 patients. J. Inherit. Metab. Dis. 36, 913–921 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. 99

    Carrozzo, R. et al. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients. J. Inherit. Metab. Dis. 39, 243–252 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Steffann, J. et al. Analysis of mtDNA variant segregation during early human embryonic development: a tool for successful NARP preimplantation diagnosis. J. Med. Genet. 43, 244–247 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Craven, L. et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465, 82–85 (2010). This paper shows that the transfer of pronuclei between abnormally fertilized human zygotes yielded minimal carry-over of donor zygote mtDNA, suggesting that the prevention of transmission of human mitochondrial diseases caused by mutations in mtDNA was possible and provides women with mtDNA mutations more reproductive options.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Tachibana, M. et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461, 367–372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Nuffied Council on Bioethics. Novel techniques for the prevention of mitochondrial DNA disorders: an ethical review. NuffieldBioEthicshttp://nuffieldbioethics.org/project/mitochondrial-dna-disorders/ (2012).

  104. 104

    National Academies Press. Mitochondrial replacement techniques: ethical, social, and policy considerations. NAPhttp://www.nationalacademies.org/hmd/Reports/2016/Mitochondrial-Replacement-Techniques.aspx (2016).

  105. 105

    Hyslop, L. A. et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 534, 383–386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Avula, S., Parikh, S., Demarest, S., Kurz, J. & Gropman, A. Treatment of mitochondrial disorders. Curr. Treat. Options Neurol. 16, 292 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. 107

    Camp, K. M. et al. Nutritional interventions in primary mitochondrial disorders: developing an evidence base. Mol. Genet. Metab.http://dx.doi.org/10.1016/j.ymgme.2016.09.002 (2016).

  108. 108

    Enns, G. M. Treatment of mitochondrial disorders: antioxidants and beyond. J. Child Neurol. 29, 1235–1240 (2014).

    Article  PubMed  Google Scholar 

  109. 109

    Rodriguez, M. C. et al. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve 35, 235–242 (2007).

    Article  CAS  Google Scholar 

  110. 110

    Panetta, J., Smith, L. J. & Boneh, A. Effect of high-dose vitamins, coenzyme Q and high-fat diet in paediatric patients with mitochondrial diseases. J. Inherit. Metab. Dis. 27, 487–498 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Matthews, P. M. et al. Coenzyme Q10 with multiple vitamins is generally ineffective in treatment of mitochondrial disease. Neurology 43, 884–884 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. 112

    Marriage, B. J., Clandinin, M. T., Macdonald, I. M. & Glerum, D. M. Cofactor treatment improves ATP synthetic capacity in patients with oxidative phosphorylation disorders. Mol. Genet. Metab. 81, 263–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Napolitano, A. et al. Long-term treatment with idebenone and riboflavin in a patient with MELAS. Neurol. Sci. 21, S981–S9812 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Tarnopolsky, M. A., Roy, B. D. & MacDonald, J. R. A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies. Muscle Nerve 20, 1502–1509 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. 115

    Koga, Y. et al. l-Arginine improves the symptoms of strokelike episodes in MELAS. Neurology 64, 710–712 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    Koga, Y. et al. MELAS and l-arginine therapy. Mitochondrion 7, 133–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. 117

    Koenig, M. K. et al. Recommendations for the management of strokelike episodes in patients with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes. JAMA Neurol. 73, 591–594 (2016).

    Article  PubMed  Google Scholar 

  118. 118

    Ng, Y. S. et al. Sudden adult death syndrome in m.3243A>G-related mitochondrial disease: anunrecognized clinical entity in young, asymptomatic adults. Eur. Heart J. 37, 2552–2559 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. 119

    Newcastle University. Wellcome Trust centre for mitochondrial research. Newcastle Universitywww.newcastle-mitochondria.com/ (accessed 1 June 2016).

  120. 120

    Viscomi, C. et al. Combined treatment with oral metronidazole and N-acetylcysteine is effective in ethylmalonic encephalopathy. Nat. Med. 16, 869–871 (2010). This study demonstrates the therapeutic efficacy of metronidazole and N-acetylcysteine (with an additive effect with dual therapy) in ethylmalonic encephalopathy by substantially prolonging the lifespan of Ethe1-deficient mice in addition to marked clinical improvement in five affected children.

  121. 121

    Tiranti, V. et al. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat. Med. 15, 200–205 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Garone, C., Tadesse, S. & Hirano, M. Clinical and genetic spectrum of mitochondrial neurogastrointestinal encephalomyopathy. Brain 134, 3326–3332 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  123. 123

    Bax, B. E. et al. Clinical and biochemical improvements in a patient with MNGIE following enzyme replacement. Neurology 81, 1269–1271 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  124. 124

    Halter, J. P. et al. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Brain 138, 2847–2858 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  125. 125

    Emmanuele, V. et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch. Neurol. 69, 978–983 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  126. 126

    Quinzii, C. M., Emmanuele, V. & Hirano, M. Clinical presentations of coenzyme Q10 deficiency syndrome. Mol. Syndromol. 5, 141–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Klopstock, T. et al. Persistence of the treatment effect of idebenone in Leber's hereditary optic neuropathy. Brain 136, e230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Klopstock, T. et al. A randomized placebo-controlled trial of idebenone in Leber's hereditary optic neuropathy. Brain 134, 2677–2686 (2011). This 24-week, multicentre, double-blind, randomized, placebo-controlled trial of idebenone was shown to preserve vision in patients with LHON and discordant vision at baseline, representing the first large randomized controlled therapeutic trial in a common form of mitochondrial disease.

    Article  PubMed  PubMed Central  Google Scholar 

  129. 129

    US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02023866 (2016).

  130. 130

    Martinelli, D. et al. EPI-743 reverses the progression of the pediatric mitochondrial disease — genetically defined Leigh syndrome. Mol. Genet. Metab. 107, 383–388 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. 131

    Haack, T. B. et al. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat. Genet. 42, 1131–1134 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. 132

    Ghezzi, D. et al. Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am. J. Hum. Genet. 86, 639–649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Nouws, J. et al. A patient with complex I deficiency caused by a novel ACAD9 mutation not responding to riboflavin treatment. JIMD Rep. 12, 37–45 (2014).

    PubMed  Google Scholar 

  134. 134

    Thommasen, H. V. & Zhang, W. Impact of chronic disease on quality of life in the Bella Coola Valley. Rural Remote Health 6, 528 (2006).

    PubMed  Google Scholar 

  135. 135

    Orsucci, D., Calsolaro, V., Siciliano, G. & Mancuso, M. Quality of life in adult patients with mitochondrial myopathy. Neuroepidemiology 38, 194–195 (2012).

    Article  PubMed  Google Scholar 

  136. 136

    Varvogli, L. & Waisbren, S. E. Personality profiles of mothers of children with mitochondrial disorders. J. Inherit. Metab. Dis. 22, 615–622 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. 137

    Read, C. Y. The demands of biochemical genetic disorders: a survey of mothers of children with mitochondrial disease or phenylketonuria. J. Pediatr. Nurs. 18, 181–186 (2003).

    Article  PubMed  Google Scholar 

  138. 138

    Boles, R. G. et al. A high predisposition to depression and anxiety in mothers and other matrilineal relatives of children with presumed maternally inherited mitochondrial disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 137B, 20–24 (2005).

    Article  PubMed  Google Scholar 

  139. 139

    Kim, K. R. et al. Caregiver's burden and quality of life in mitochondrial disease. Pediatr. Neurol. 42, 271–276 (2010).

    Article  PubMed  Google Scholar 

  140. 140

    Noorda, G. et al. Mitochondrial disease: needs and problems of children, their parents and family. Asystematic review and pilot study into the need for information of parents during the diagnostic phase. J. Inherit. Metab. Dis. 30, 333–340 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Sexton, A. C., Sahhar, M., Thorburn, D. R. & Metcalfe, S. A. Impact of a genetic diagnosis of a mitochondrial disorder 5–17 years after the death of an affected child. J. Genet. Couns. 17, 261–273 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. 142

    Rogac, M., Meznaric, M., Zeviani, M., Sperl, W. & Neubauer, D. Functional outcome of children with mitochondrial diseases. Pediatr. Neurol. 44, 340–346 (2011).

    Article  PubMed  Google Scholar 

  143. 143

    Kratz, L., Uding, N., Trahms, C. M., Villareale, N. & Kieckhefer, G. M. Managing childhood chronic illness: parent perspectives and implications for parent-provider relationships. Fam. Syst. Health 27, 303–313 (2009).

    Article  PubMed  Google Scholar 

  144. 144

    Department of Health. The human fertilisation and embryology (mitochondrial donation) regulations 2015. Legislationhttp://www.legislation.gov.uk/ukdsi/2015/9780111125816/impacts (accessed 1 June 2016).

  145. 145

    Calvo, S. E. et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci. Transl Med. 4, 118ra10 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Falk, M. J. et al. Mitochondrial Disease Sequence Data Resource (MSeqDR): a global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Mol. Genet. Metab. 114, 388–396 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. 147

    Bender, A. et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 38, 515–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. 148

    Oldfors, A. et al. Mitochondrial abnormalities in inclusion-body myositis. Neurology 66, S49–S55 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. 149

    Pietilainen, K. H. et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med. 5, e51 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Suomalainen, A. & Isohanni, P. Mitochondrial DNA depletion syndromes — many genes, common mechanisms. Neuromuscul. Disord. 20, 429–437 (2010).

    Article  PubMed  Google Scholar 

  151. 151

    Gonzalez-Vioque, E., Torres-Torronteras, J., Andreu, A. L. & Marti, R. Limited dCTP availability accounts for mitochondrial DNA depletion in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). PLoS Genet. 7, e1002035 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Nikkanen, J. et al. Mitochondrial DNA replication defects disturb cellular dNTP pools and remodel one-carbon metabolism. Cell Metab. 23, 635–648 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. 153

    Camara, Y. et al. Administration of deoxyribonucleosides or inhibition of their catabolism as a pharmacological approach for mitochondrial DNA depletion syndrome. Hum. Mol. Genet. 23, 2459–2467 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. 154

    Tyynismaa, H. & Schon, E. A. Mixing and matching mitochondrial aminoacyl synthetases and their tRNAs: a new way to treat respiratory chain disorders? EMBO Mol. Med. 6, 155–157 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Vafai, S. B. & Mootha, V. K. Mitochondrial disorders as windows into an ancient organelle. Nature 491, 374–383 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. 156

    Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Nicholls, P. Formate as an inhibitor of cytochrome c oxidase. Biochem. Biophys. Res. Commun. 67, 610–616 (1975).

    Article  CAS  PubMed  Google Scholar 

  158. 158

    Wai, T. et al. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350, aad0116 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. 159

    Ahola-Erkkila, S. et al. Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum. Mol. Genet. 19, 1974–1984 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. 160

    Schiff, M. et al. Mouse studies to shape clinical trials for mitochondrial diseases: high fat diet in Harlequin mice. PLoS ONE 6, e28823 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Kang, H. C., Lee, Y. M., Kim, H. D., Lee, J. S. & Slama, A. Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia 48, 82–88 (2007).

    CAS  PubMed  Google Scholar 

  162. 162

    Steinfeld, R. et al. Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am. J. Hum. Genet. 85, 354–363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Pfeffer, G., Majamaa, K., Turnbull, D. M., Thorburn, D. & Chinnery, P. F. Treatment for mitochondrial disorders. Cochrane Database Syst. Rev. 4, CD004426 (2012).

    Google Scholar 

  165. 165

    Taivassalo, T. et al. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 129, 3391–3401 (2006).

    Article  PubMed  Google Scholar 

  166. 166

    Taivassalo, T. & Haller, R. G. Exercise and training in mitochondrial myopathies. Med. Sci. Sports Exerc. 37, 2094–2101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. 167

    Uittenbogaard, M. & Chiaramello, A. Mitochondrial biogenesis: a therapeutic target for neurodevelopmental disorders and neurodegenerative diseases. Curr. Pharm. Des. 20, 5574–5593 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. 168

    Yatsuga, S. & Suomalainen, A. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice. Hum. Mol. Genet. 21, 526–535 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. 169

    Wenz, T., Diaz, F., Spiegelman, B. M. & Moraes, C. T. Activation of the PPAR/PGC-1α pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab. 8, 249–256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Viscomi, C. et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1α axis. Cell Metab. 14, 80–90 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. 171

    Cerutti, R. et al. NAD+-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 19, 1042–1049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. 172

    Khan, N. A. et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3 . EMBO Mol. Med. 6, 721–731 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Pirinen, E. et al. Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 19, 1034–1041 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. 174

    Gilkerson, R. W. et al. Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Hum. Mol. Genet. 21, 978–990 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. 175

    Johnson, S. C. et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342, 1524–1528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. 176

    Jain, I. H. et al. Hypoxia as a therapy for mitochondrial disease. Science 352, 54–61 (2016). This landmark paper shows the powerful suppressor effect of hypoxia on mitochondrial dysfunction, suggesting that the hypoxia response may serve as a potent therapeutic strategy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. 177

    Garone, C. et al. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol. Med. 6, 1016–1027 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. 178

    Hashimoto, M. et al. MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol. Ther. 23, 1592–1599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. 179

    Minczuk, M., Papworth, M. A., Miller, J. C., Murphy, M. P. & Klug, A. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res. 36, 3926–3938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. 180

    Reddy, P. et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161, 459–469 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. 181

    Di Meo, I. et al. Effective AAV-mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO Mol. Med. 4, 1008–1014 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. 182

    Torres-Torronteras, J. et al. Gene therapy using a liver-targeted AAV vector restores nucleoside and nucleotide homeostasis in a murine model of MNGIE. Mol. Ther. 22, 901–907 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. 183

    López, L. C. et al. Unbalanced deoxynucleotide pools cause mitochondrial DNA instability in thymidine phosphorylase-deficient mice. Hum. Mol. Genet. 18, 714–722 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. 184

    Dionisi-Vici, C. et al. Liver transplant in ethylmalonic encephalopathy: a new treatment for an otherwise fatal disease. Brain 139, 1045–1051 (2016).

    Article  PubMed  Google Scholar 

  185. 185

    Grabhorn, E. et al. Long-term outcomes after liver transplantation for deoxyguanosine kinase deficiency: a single-center experience and a review of the literature. Liver Transpl. 20, 464–472 (2014).

    Article  PubMed  Google Scholar 

  186. 186

    Koopman, W. J. H. et al. Mitochondrial disorders in children: toward development of small-molecule treatment strategies. EMBO Mol. Med. 8, 311–327 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. 187

    Stewart, J. B. & Chinnery, P. F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16, 530–542 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. 188

    Taylor, R. W. & Turnbull, D. M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6, 389–402 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. 189

    Darin, N., Oldfors, A., Moslemi, A. R., Holme, E. & Tulinius, M. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA anbormalities. Ann. Neurol. 49, 377–383 (2001).

    Article  CAS  PubMed  Google Scholar 

  190. 190

    Diogo, L. et al. Pediatric mitochondrial respiratory chain disorders in the Centro region of Portugal. Pediatr. Neurol. 40, 351–356 (2009).

    Article  PubMed  Google Scholar 

  191. 191

    Castro-Gago, M. et al. Epidemiology of pediatric mitochondrial respiratory chain disorders in northwest Spain. Pediatr. Neurol. 34, 204–211 (2006).

    Article  PubMed  Google Scholar 

  192. 192

    Uusimaa, J. et al. Childhood encephalopathies and myopathies: a prospective study in a defined population to assess the frequency of mitochondrial disorders. Pediatrics 105, 598–603 (2000).

    Article  CAS  PubMed  Google Scholar 

  193. 193

    Yatsuga, S. et al. MELAS: a nationwide prospective cohort study of 96 patients in Japan. Biochim. Biophys. Acta 1820, 619–624 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. 194

    Pfeffer, G., Burke, A., Yu-Wai-Man, P., Compston, D. A. S. & Chinnery, P. F. Clinical features of MS associated with Leber hereditary optic neuropathy mtDNA mutations. Neurology 81, 2073–2081 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. 195

    Van Goethem, G., Dermaut, B., Löfgren, A., Martin, J.-J. & Van Broeckhoven, C. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat. Genet. 28, 211–212 (2001). This paper describes the identification of the most important nuclear gene responsible for mitochondrial diseases, and demonstrates that different mutations exhibit variable Mendelian inheritance that result in either a recessive or a dominant disorder.

    Article  CAS  PubMed  Google Scholar 

  196. 196

    Longley, M. J. et al. Mutant POLG2 disrupts DNA polymerase γ subunits and causes progressive external ophthalmoplegia. Am. J. Hum. Genet. 78, 1026–1034 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. 197

    Garone, C. et al. MPV17 mutations causing adult-onset multisystemic disorder with multiple mitochondrial DNA deletions. Arch. Neurol. 69, 1648–1651 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  198. 198

    Ronchi, D. et al. Next-generation sequencing reveals DGUOK mutations in adult patients with mitochondrial DNA multiple deletions. Brain 135, 3404–3415 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  199. 199

    Tyynismaa, H. et al. Thymidine kinase 2 mutations in autosomal recessive progressive external ophthalmoplegia with multiple mitochondrial DNA deletions. Hum. Mol. Genet. 21, 66–75 (2012).

    Article  CAS  PubMed  Google Scholar 

  200. 200

    Tyynismaa, H. et al. A heterozygous truncating mutation in RRM2B causes autosomal-dominant progressive external ophthalmoplegia with multiple mtDNA deletions. Am. J. Hum. Genet. 85, 290–295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. 201

    Spelbrink, J. N. et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat. Genet. 28, 223–231 (2001). This paper identified mutations in the gene encoding Twinkle, manifesting as autosomal dominant progressive external ophthalmoplegia associated with muscle-restricted multiple mtDNA deletions.

    Article  CAS  PubMed  Google Scholar 

  202. 202

    Kaukonen, J. et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289, 782–785 (2000).

    Article  CAS  PubMed  Google Scholar 

  203. 203

    Pfeffer, G. et al. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain 137, 1323–1336 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  204. 204

    Gorman, G. S. et al. Clonal expansion of secondary mitochondrial DNA deletions associated with spinocerebellar ataxia type 28. JAMA Neurol. 72, 106–111 (2015).

    Article  PubMed  Google Scholar 

  205. 205

    Ronchi, D. et al. Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability. Am. J. Hum. Genet. 92, 293–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. 206

    Reyes, A. et al. RNASEH1 mutations impair mtDNA replication and cause adult-onset mitochondrial encephalomyopathy. Am. J. Hum. Genet. 97, 186–193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. 207

    Gal, A. et al. The coexistence of dynamin 2 mutation and multiple mitochondrial DNA (mtDNA) deletions in the background of severe cardiomyopathy and centronuclear myopathy. Clin. Neuropathol. 34, 89–95 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Y.K. received research support from the Japan Agency for Medical Research and Development. D.R.T. receives research support from the Australian National Health and Medical Research Council Principal Research Fellowship and by the Victorian Government's Operational Infrastructure Support Program. G.S.G., R.M.F. and D.M.T. are supported by the Wellcome Trust Centre for Mitochondrial Research, Newcastle University Centre for Ageing and Vitality (supported by the Biotechnology and Biological Sciences Research Council and the Medical Research Council (MRC)), the MRC Centre for Neuromuscular Disease, the MRC Centre for Translational Research in Neuromuscular Disease Mitochondrial Disease Patient Cohort (UK), the Lily Foundation, the UK National Institute for Health Research (NIHR) Biomedical Research Centre in Age and Age Related Diseases award to the Newcastle-upon-Tyne Hospitals NHS Foundation Trust and UK NHS Specialist Commissioners ‘Rare Mitochondrial Disorders of Adults and Children’ Service. A.S. received research support from the European Research Council, the Sigrid Jusélius Foundation and the Academy of Finland. M.Z. is supported by the MRC and a European Research Council advanced grant.

Author information

Affiliations

Authors

Contributions

Introduction (D.M.T.); Epidemiology (G.S.G. and D.R.T.); Mechanisms/pathophysiology (D.M.T., P.F.C. and M.Z.); Diagnosis, screening and prevention (G.S.G., Y.K., R.M.F. and D.R.T.); Management (S.D. and M.H.); Quality of life (D.M.T. and G.S.G.); Outlook (A.S.); Overview of Primer (G.S.G. and D.M.T.)

Corresponding author

Correspondence to Douglass M. Turnbull.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gorman, G., Chinnery, P., DiMauro, S. et al. Mitochondrial diseases. Nat Rev Dis Primers 2, 16080 (2016). https://doi.org/10.1038/nrdp.2016.80

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing