Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applying genomic and transcriptomic advances to mitochondrial medicine

Abstract

Next-generation sequencing (NGS) has increased our understanding of the molecular basis of many primary mitochondrial diseases (PMDs). Despite this progress, many patients with suspected PMD remain without a genetic diagnosis, which restricts their access to in-depth genetic counselling, reproductive options and clinical trials, in addition to hampering efforts to understand the underlying disease mechanisms. Although they represent a considerable improvement over their predecessors, current methods for sequencing the mitochondrial and nuclear genomes have important limitations, and molecular diagnostic techniques are often manual and time consuming. However, recent advances in genomics and transcriptomics offer realistic solutions to these challenges. In this Review, we discuss the current genetic testing approach for PMDs and the opportunities that exist for increased use of whole-genome NGS of nuclear and mitochondrial DNA (mtDNA) in the clinical environment. We consider the possible role for long-read approaches in sequencing of mtDNA and in the identification of novel nuclear genomic causes of PMDs. We examine the expanding applications of RNA sequencing, including the detection of cryptic variants that affect splicing and gene expression and the interpretation of rare and novel mitochondrial transfer RNA variants.

Key points

  • At present, the diagnosis of primary mitochondrial disease is a multistep process often involving a number of time-consuming and highly manual molecular techniques.

  • Early whole-genome sequencing of blood, analysing both mitochondrial and nuclear DNA, is likely to improve diagnostic efficiency in some people with mitochondrial disease.

  • In future, the application of long-read sequencing to mitochondrial DNA could build on the advances made by next-generation sequencing to further enhance coverage, and enable the identification of large-scale rearrangements and point mutations in a single test.

  • As with other rare diseases, whole-genome long-read sequencing might provide the next diagnostic uplift given its ability to identify structural variants, short tandem repeat variants and epigenetic modifications, and to phase compound heterozygous variants.

  • Mitochondrial medicine is poised to benefit substantially from the increasing use of RNA sequencing of tissue samples; advances in pre-processing and sequencing of transfer RNA are enabling new insights into this molecule, which plays an outsized role in the aetiology of mitochondrial diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of PMD symptoms.
Fig. 2: Approach to finding a genetic diagnosis in the many patients with suspected PMD in whom targeted testing is not feasible.
Fig. 3: Single-molecule real-time sequencing and nanopore sequencing.
Fig. 4: The role of long-read sequencing in mitochondrial medicine.
Fig. 5: The role of RNA sequencing in mitochondrial medicine.
Fig. 6: Sequencing of transfer RNA in mitochondrial medicine.

Similar content being viewed by others

References

  1. Rahman, J. & Rahman, S. Mitochondrial medicine in the omics era. Lancet 391, 2560–2574 (2018).

    CAS  PubMed  Google Scholar 

  2. Stenton, S. L. & Prokisch, H. Advancing genomic approaches to the molecular diagnosis of mitochondrial disease. Essays Biochem. 62, 399–408 (2018).

    PubMed  Google Scholar 

  3. Gorman, G. S. et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77, 753–759 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Castro-Gago, M. et al. Epidemiology of pediatric mitochondrial respiratory chain disorders in northwest Spain. Pediatr. Neurol. 34, 204–211 (2006).

    PubMed  Google Scholar 

  5. Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Primers 2, 16080 (2016).

    PubMed  Google Scholar 

  6. Carelli, V. & Morgia, C. La. Clinical syndromes associated with mtDNA mutations: where we stand after 30 years. Essays Biochem. 62, 235–254 (2018).

    PubMed  Google Scholar 

  7. Nesbitt, V. et al. The UK MRC mitochondrial disease patient cohort study: clinical phenotypes associated with the m.3243A>G mutation–implications for diagnosis and management. J. Neurol. Neurosurg. Psychiatry 84, 936–938 (2013).

    PubMed  Google Scholar 

  8. Pitceathly, R. D. S. et al. Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-Tooth disease. Neurology 79, 1145–1154 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pitceathly, R., Keshavan, N., Rahman, J. & Rahman, S. Moving towards clinical trials for mitochondrial diseases. J. Inherit. Metab. Dis. https://doi.org/10.1002/jimd.12281 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 1–18 (1981).

    Google Scholar 

  11. Robin, E. D. & Wong, R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J. Cell. Physiol. 136, 507–513 (1988).

    CAS  PubMed  Google Scholar 

  12. Bogenhagen, D. F. Mitochondrial DNA nucleoid structure. Biochim. Biophys. Acta 1819, 914–920 (2012).

    CAS  PubMed  Google Scholar 

  13. D’Souza, A. R. & Minczuk, M. Mitochondrial transcription and translation: overview. Essays Biochem. 62, 309–320 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Wei, W. et al. Nuclear-mitochondrial DNA segments resemble paternally inherited mitochondrial DNA in humans. Nat. Commun. 11, 1–11 (2020).

    Google Scholar 

  15. Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).

    PubMed  Google Scholar 

  16. Frazier, A. E., Thorburn, D. R. & Compton, A. G. Mitochondrial energy generation disorders: genes, mechanisms, and clues to pathology. J. Biol. Chem. 294, 5386–5395 (2019).

    CAS  PubMed  Google Scholar 

  17. El-Hattab, A. W., Craigen, W. J. & Scaglia, F. Mitochondrial DNA maintenance defects. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 1539–1555 (2017).

    CAS  PubMed  Google Scholar 

  18. Rahman, S., Poulton, J., Marchington, D. & Suomalainen, A. Decrease of 3243 A→G mtDNA mutation from blood in MELAS syndrome: a longitudinal study. Am. J. Hum. Genet. 68, 238–240 (2001).

    CAS  PubMed  Google Scholar 

  19. Goldstein, A. & Falk, M. J. Mitochondrial DNA deletion syndromes. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 2019).

  20. He, Y. et al. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464, 610–614 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rossignol, R. et al. Mitochondrial threshold effects. Biochem. J. 370, 751–762 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Maeda, K. et al. Clinical phenotype and segregation of mitochondrial 3243A>G mutation in 2 pairs of monozygotic twins. JAMA Neurol. 73, 990–993 (2016).

    PubMed  Google Scholar 

  23. Lynn, S., Borthwick, G. M., Charnley, R. M., Walker, M. & Turnbull, D. M. Heteroplasmic ratio of the A3243G mitochondrial DNA mutation in single pancreatic beta cells. Diabetologia 46, 296–299 (2003).

    CAS  PubMed  Google Scholar 

  24. Elliott, H. R., Samuels, D. C., Eden, J. A., Relton, C. L. & Chinnery, P. F. Pathogenic mitochondrial DNA mutations are common in the general population. Am. J. Hum. Genet. 83, 254–260 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kohda, M. et al. A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies. PLoS Genet. 12, 1–31 (2016).

    Google Scholar 

  26. Lieber, D. S. et al. Targeted exome sequencing of suspected mitochondrial disorders. Neurology 80, 1762–1770 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ohtake, A. et al. Diagnosis and molecular basis of mitochondrial respiratory chain disorders: exome sequencing for disease gene identification. Biochim. Biophys. Acta Gen. Subj. 1840, 1355–1359 (2014).

    CAS  Google Scholar 

  28. Pronicka, E. et al. New perspective in diagnostics of mitochondrial disorders: two years’ experience with whole-exome sequencing at a national paediatric centre. J. Transl. Med. 14, 1–19 (2016).

    Google Scholar 

  29. Taylor, R. W. et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 312, 68–77 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Wortmann, S. B., Koolen, D. A., Smeitink, J. A., van den Heuvel, L. & Rodenburg, R. J. Whole exome sequencing of suspected mitochondrial patients in clinical practice. J. Inherit. Metab. Dis. 38, 437–443 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cui, H. et al. Comprehensive next-generation sequence analyses of the entire mitochondrial genome reveal new insights into the molecular diagnosis of mitochondrial DNA disorders. Genet. Med. 15, 388–394 (2013).

    CAS  PubMed  Google Scholar 

  32. Zhang, W., Cui, H. & Wong, L. J. C. Comprehensive one-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clin. Chem. 58, 1322–1331 (2012). The key paper that established the role of deep NGS of long-range PCR-amplified mtDNA in identifying point mutations and large deletions, including heteroplasmic variants.

    CAS  PubMed  Google Scholar 

  33. Seneca, S. et al. Analysis of the whole mitochondrial genome: translation of the Ion Torrent Personal Genome Machine system to the diagnostic bench? Eur. J. Hum. Genet. 23, 41–48 (2015).

    CAS  PubMed  Google Scholar 

  34. Riley, L. G. et al. The diagnostic utility of genome sequencing in a pediatric cohort with suspected mitochondrial disease. Genet. Med. 22, 1254–1261 (2020). The first study to use WGS specifically for mitochondrial presentations.

    CAS  PubMed  Google Scholar 

  35. Kremer, L. S. et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat. Commun. 8, 1–11 (2017). This paper shows that RNA-seq can be used to diagnose mitochondrial diseases and is the first large study to demonstrate the clinical utility of the technique in a rare disease.

    Google Scholar 

  36. Ellerby, L. M. Repeat expansion disorders: mechanisms and therapeutics. Neurotherapeutics 16, 924–927 (2019).

    PubMed  Google Scholar 

  37. Yu-Wai-Man, P. & Chinnery, P. F. Leber hereditary optic neuropathy. in GeneReviews (eds Adam, M. P. et al.) 1–19 (University of Washington, Seattle, 2016).

  38. Wong, L. J. C. et al. Utility of oligonucleotide array-based comparative genomic hybridization for detection of target gene deletions. Clin. Chem. 54, 1141–1148 (2008).

    CAS  PubMed  Google Scholar 

  39. Naini, A. & Shanske, S. Detection of mutations in mtDNA. Methods Cell Biol. 80, 437–463 (2007).

    CAS  PubMed  Google Scholar 

  40. Chinault, A. C., Shaw, C. A., Brundage, E. K., Tang, L. Y. & Wong, L. J. C. Application of dual-genome oligonucleotide array-based comparative genomic hybridization to the molecular diagnosis of mitochondrial DNA deletion and depletion syndromes. Genet. Med. 11, 518–526 (2009).

    CAS  PubMed  Google Scholar 

  41. Shanske, S. & Wong, L. J. C. Molecular analysis for mitochondrial DNA disorders. Mitochondrion 4, 403–415 (2004).

    CAS  PubMed  Google Scholar 

  42. Grier, J., Hirano, M., Karaa, A., Shepard, E. & Thompson, J. L. P. Diagnostic odyssey of patients with mitochondrial disease results of a survey. Neurol. Genet. 4, e230 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Alston, C. L., Rocha, M. C., Lax, N. Z., Turnbull, D. M. & Taylor, R. W. The genetics and pathology of mitochondrial disease. J. Pathol. 241, 236–250 (2017).

    CAS  PubMed  Google Scholar 

  44. Wong, L. J. C. et al. Interpretation of mitochondrial tRNA variants. Genet. Med. 22, 917–926 (2020). An insightful paper that presents the analysis of a large number of mt-tRNA variants in the context of modern variant classification standards and suggests a tailored approach to classifying mutations in this unique group of molecules.

    CAS  PubMed  Google Scholar 

  45. Diroma, M. A. et al. Extraction and annotation of human mitochondrial genomes from 1000 Genomes Whole Exome Sequencing data. BMC Genomics 15, 1–15 (2014).

    Google Scholar 

  46. Garret, P. et al. Deciphering exome sequencing data: bringing mitochondrial DNA variants to light. Hum. Mutat. 40, 2430–2443 (2019).

    CAS  PubMed  Google Scholar 

  47. Griffin, H. R. et al. Accurate mitochondrial DNA sequencing using off-target reads provides a single test to identify pathogenic point mutations. Genet. Med. 16, 962–971 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. van Oven, M. & Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, 386–394 (2009).

    Google Scholar 

  49. Ghelli, A. M. et al. The background of mitochondrial DNA haplogroup J increases the sensitivity of Leber’s hereditary optic neuropathy cells to 2,5-hexanedione toxicity. PLoS ONE 4, e7922 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. Hudson, G. et al. Clinical expression of leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background. Am. J. Hum. Genet. 81, 228–233 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ye, F., Samuels, D. C., Clark, T. & Guo, Y. High-throughput sequencing in mitochondrial DNA research. Mitochondrion 17, 157–163 (2014).

    CAS  PubMed  Google Scholar 

  52. Gould, M. P. et al. PCR-free enrichment of mitochondrial DNA from human blood and cell lines for high quality next-generation DNA sequencing. PLoS ONE 10, 1–13 (2015).

    Google Scholar 

  53. Akbari, M., Hansen, M. D., Halgunset, J., Skorpen, F. & Krokan, H. E. Low copy number DNA template can render polymerase chain reaction error prone in a sequence-dependent manner. J. Mol. Diagn. 7, 36–39 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Santibanez-koref, M. et al. Assessing mitochondrial heteroplasmy using next generation sequencing: a note of caution. Mitochondrion 46, 302–306 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hazkani-Covo, E., Zeller, R. M. & Martin, W. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 6, e1000834 (2010).

    PubMed  PubMed Central  Google Scholar 

  56. Tourmen, Y. et al. Structure and chromosomal distribution of human mitochondrial pseudogenes. Genomics 80, 71–77 (2002).

    CAS  PubMed  Google Scholar 

  57. Parr, R. L. et al. The pseudo-mitochondrial genome influences mistakes in heteroplasmy interpretation. BMC Genomics 13, 1–13 (2006).

    Google Scholar 

  58. Marquis, J. et al. MitoRS, a method for high throughput, sensitive, and accurate detection of mitochondrial DNA heteroplasmy. BMC Genomics 18, 1–19 (2017).

    Google Scholar 

  59. Wolff, J. N., Shearman, D. C. A., Brooks, R. C. & Ballard, J. W. O. Selective enrichment and sequencing of whole mitochondrial genomes in the presence of nuclear encoded mitochondrial pseudogenes (Numts). PLoS ONE 7, 1–7 (2012).

    Google Scholar 

  60. Ancora, M. et al. Mitochondrial heteroplasmy profiling in single human oocytes by next-generation sequencing. Mitochondrial DNA B Resour 2, 543–544 (2017).

    Google Scholar 

  61. Yao, Y. et al. A simple method for sequencing the whole human mitochondrial genome directly from samples and its application to genetic testing. Sci. Rep. 9, 1–7 (2019).

    Google Scholar 

  62. Williams, S. L. et al. The mtDNA mutation spectrum of the progeroid Polg mutator mouse includes abundant control region multimers. Cell Metab. 12, 675–682 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Maricic, T., Whitten, M. & Pa, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5, 9–13 (2010).

    Google Scholar 

  64. Weerts, M. J. A. et al. Sensitive detection of mitochondrial DNA variants for analysis of mitochondrial DNA-enriched extracts from frozen tumor tissue. Sci. Rep. 8, 2261 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. McDowell, D. G., Burns, N. A. & Parkes, H. C. Localised sequence regions possessing high melting temperatures prevent the amplification of a DNA mimic in competitive PCR. Nucleic Acids Res. 26, 3340–3347 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wood, E. et al. Clinical long-read sequencing of the human mitochondrial genome for mitochondrial disease diagnostics. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/597187v1 (2019). The first clinical use of nanopore for mtDNA variants; although accuracy problems lead to false-positive point mutations, the technology successfully sequenced the entire genome and identified deletions missed by NGS.

  67. Strachan, T. & Read, A. Human Molecular Genetics (CRC Press, 2019).

  68. Almannai, M., El-Hattab, A. W. & Scaglia, F. Mitochondrial DNA replication: clinical syndromes. Essays Biochem. 62, 297–308 (2018).

    PubMed  Google Scholar 

  69. Raymond, F. L., Horvath, R. & Chinnery, P. F. First-line genomic diagnosis of mitochondrial disorders. Nat. Rev. Genet. 19, 399–400 (2018).

    CAS  PubMed  Google Scholar 

  70. Koenig, M. K. Presentation and diagnosis of mitochondrial disorders in children. Pediatr. Neurol. 38, 305–313 (2008).

    PubMed  PubMed Central  Google Scholar 

  71. Posey, J. E. et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N. Engl. J. Med. 376, 21–31 (2017).

    CAS  PubMed  Google Scholar 

  72. Parikh, S. et al. Diagnosis of possible mitochondrial disease: an existential crisis. J. Med. Genet. 56, 123–130 (2019).

    CAS  PubMed  Google Scholar 

  73. Uittenbogaard, M. et al. The nuclear background influences the penetrance of the near-homoplasmic m.1630 A>G MELAS variant in a symptomatic proband and asymptomatic mother. Mol. Genet. Metab. 126, 429–438 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Boczonadi, V., Bansagi, B. & Horvath, R. Reversible infantile mitochondrial diseases. J. Inherit. Metab. Dis. 38, 427–435 (2015).

    CAS  PubMed  Google Scholar 

  75. Horvath, R. et al. Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain 132, 3165–3174 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Hathazi, D. et al. Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency. EMBO J. 44, 1–19 (2020). A very recent paper that elegantly illustrates the complex interplay between the mitochondrial and nuclear genomes.

    Google Scholar 

  77. Rygiel, K. A. et al. Complex mitochondrial DNA rearrangements in individual cells from patients with sporadic inclusion body myositis. Nucleic Acids Res. 44, 5313–5329 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. McCormick, E. M. et al. Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation Hum. Mutat. 41, 2028–2057 (2020).

    PubMed  PubMed Central  Google Scholar 

  80. Marshall, C. R. et al. The medical genome initiative: moving whole-genome sequencing for rare disease diagnosis to the clinic. Genome Med. 12, 48 (2020).

    PubMed  PubMed Central  Google Scholar 

  81. Gerner-Smidt, P. et al. Whole genome sequencing: bridging one-health surveillance of foodborne diseases. Front. Public Health 7, 1–11 (2019).

    Google Scholar 

  82. Giannopoulou, E., Katsila, T., Mitropoulou, C., Tsermpini, E. E. & Patrinos, G. P. Integrating next-generation sequencing in the clinical pharmacogenomics workflow. Front. Pharmacol. 10, 1–6 (2019).

    Google Scholar 

  83. Turnbull, C. et al. The 100 000 Genomes Project: bringing whole genome sequencing to the NHS. BMJ 361, 1–7 (2018).

    Google Scholar 

  84. Handsaker, R. E. et al. Large multiallelic copy number variations in humans. Nat. Genet. 47, 296–303 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    CAS  PubMed  Google Scholar 

  87. Travers, K. J., Chin, C. S., Rank, D. R., Eid, J. S. & Turner, S. W. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res. 38, e159 (2010).

    PubMed  PubMed Central  Google Scholar 

  88. van Dijk, E. L., Jaszczyszyn, Y., Naquin, D. & Thermes, C. The third revolution in sequencing technology. Trends Genet. 34, 666–681 (2018).

    PubMed  Google Scholar 

  89. Amarasinghe, S. L. et al. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 21, 1–16 (2020).

    Google Scholar 

  90. Vossen, R. H. A. M. & Buermans, H. P. J. in Genotyping: Methods and Protocols (eds White, S. J. & Cantsilieris, S.) 179–184 (Humana Press, 2017).

  91. Chakraborty, S. et al. Mitochondrial DNA sequencing using PacBio SMRT technology. Presented at the PacBio Advances in Genome Biology and Technology conference. (2018).

  92. Borràs, D. M. et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. Hum. Mutat. 38, 870–879 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Frans, G. et al. Conventional and single-molecule targeted sequencing method for specific variant detection in IKBKG while bypassing the IKBKGP1 pseudogene. J. Mol. Diagn. 20, 195–202 (2018).

    CAS  PubMed  Google Scholar 

  94. Alkanaq, A. N. et al. Comparison of mitochondrial DNA variants detection using short- and long-read sequencing. J. Hum. Genet. 64, 1107–1116 (2019).

    CAS  PubMed  Google Scholar 

  95. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Vollger, M. R. et al. Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads. Ann. Hum. Genet. 84, 125–140 (2020).

    CAS  PubMed  Google Scholar 

  97. Zascavage, R. R. et al. Approaches to whole mitochondrial genome sequencing on the Oxford Nanopore MinION. Curr. Protoc. Hum. Genet. 104, e94 (2019).

    CAS  PubMed  Google Scholar 

  98. Zascavage, R. R., Thorson, K. & Planz, J. V. Nanopore sequencing: an enrichment-free alternative to mitochondrial DNA sequencing. Electrophoresis 40, 272–280 (2019).

    CAS  PubMed  Google Scholar 

  99. Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chaisson, M. J. P. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015).

    CAS  PubMed  Google Scholar 

  101. Seo, J. S. et al. De novo assembly and phasing of a Korean human genome. Nature 538, 243–247 (2016).

    CAS  PubMed  Google Scholar 

  102. Sharp, A. J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chiang, C. et al. The impact of structural variation on human gene expression. Nat. Genet. 49, 692–699 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10, 1–16 (2019).

    CAS  Google Scholar 

  105. Beyter, D. et al. Long read sequencing of 1,817 Icelanders provides insight into the role of structural variants in human disease. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/848366v2 (2019).

  106. Dolzhenko, E. et al. ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics 35, 4754–4756 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Dolzhenko, E. et al. ExpansionHunter Denovo: a computational method for locating known and novel repeat expansions in short-read sequencing data. Genome Biol. 21, 1–14 (2020).

    Google Scholar 

  108. Mitsuhashi, S. et al. Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads. Genome Biol. 20, 1–17 (2019).

    Google Scholar 

  109. Ummat, A. & Bashir, A. Resolving complex tandem repeats with long reads. Bioinformatics 30, 3491–3498 (2014).

    CAS  PubMed  Google Scholar 

  110. Liu, Q., Zhang, P., Wang, D., Gu, W. & Wang, K. Interrogating the ‘unsequenceable’ genomic trinucleotide repeat disorders by long-read sequencing. Genome Med. 9, 1–16 (2017).

    Google Scholar 

  111. Sone, J. et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat. Genet. 51, 1215–1221 (2019).

    CAS  PubMed  Google Scholar 

  112. Ardui, S. et al. Detecting AGG interruptions in females with a FMR1 premutation by long-read single-molecule sequencing: a 1 year clinical experience. Front. Genet. 9, 1–6 (2018).

    Google Scholar 

  113. Cumming, S. A. et al. De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1. Eur. J. Hum. Genet. 26, 1635–1647 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Nakamura, H. et al. Long-read sequencing identifies the pathogenic nucleotide repeat expansion in RFC1 in a Japanese case of CANVAS. J. Hum. Genet. 65, 475–480 (2020).

    CAS  PubMed  Google Scholar 

  115. Mitsuhashi, S. et al. Nanopore-based single molecule sequencing of the D4Z4 array responsible for facioscapulohumeral muscular dystrophy. Sci. Rep. 7, 1–8 (2017).

    Google Scholar 

  116. Nageshwaran, S. & Festenstein, R. Epigenetics and triplet-repeat neurological diseases. Front. Neurol. 6, 1–9 (2015).

    Google Scholar 

  117. Elhamamsy, A. R. Role of DNA methylation in imprinting disorders: an updated review. J. Assist. Reprod. Genet. 34, 549–562 (2017).

    PubMed  PubMed Central  Google Scholar 

  118. Sadikovic, B., Aref-Eshghi, E., Levy, M. A. & Rodenhiser, D. DNA methylation signatures in mendelian developmental disorders as a diagnostic bridge between genotype and phenotype. Epigenomics 11, 563–575 (2019).

    CAS  PubMed  Google Scholar 

  119. Sharma, N., Pasala, M. S. & Prakash, A. Mitochondrial DNA: epigenetics and environment. Environ. Mol. Mutagen. 60, 668–682 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Patil, V. et al. Human mitochondrial DNA is extensively methylated in a non-CpG context. Nucleic Acids Res. 47, 10072–10085 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Pearce, S. F. et al. Regulation of mammalian mitochondrial gene expression: recent advances. Trends Biochem. Sci. 42, 625–639 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kang, D., Miyako, K., Kai, Y., Irie, T. & Takeshige, K. In vivo determination of replication origins of human mitochondrial DNA by ligation-mediated polymerase chain reaction. J. Biol. Chem. 272, 15275–15279 (1997).

    CAS  PubMed  Google Scholar 

  123. Emrich, S. J., Barbazuk, W. B., Li, L. & Schnable, P. S. Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res. 17, 69–73 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. Nat. Rev. Genet. 20, 631–656 (2019).

    CAS  PubMed  Google Scholar 

  126. Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).

    CAS  PubMed  Google Scholar 

  127. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1308 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Navarro-Sastre, A. et al. A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am. J. Hum. Genet. 89, 656–667 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Pitceathly, R. D. S. et al. NDUFA4 mutations underlie dysfunction of a cytochrome c oxidase subunit linked to human neurological disease. Cell Rep. 3, 1795–1805 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Taanman, J. W. et al. Characterization of a novel TYMP splice site mutation associated with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Neuromuscul. Disord. 19, 151–154 (2009).

    PubMed  Google Scholar 

  131. López-Bigas, N., Audit, B., Ouzounis, C., Parra, G. & Guigó, R. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett. 579, 1900–1903 (2005).

    PubMed  Google Scholar 

  132. Lord, J. et al. Pathogenicity and selective constraint on variation near splice sites. Genome Res. 29, 159–170 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Wai, H. A. et al. Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance. Genet. Med. 22, 1005–1014 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cummings, B. B. et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci. Transl. Med. 12, 1–25 (2017).

    Google Scholar 

  135. Gonorazky, H. D. et al. Expanding the boundaries of RNA sequencing as a diagnostic tool for rare mendelian disease. Am. J. Hum. Genet. 104, 466–483 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Frésard, L. et al. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat. Med. 25, 911–919 (2019).

    PubMed  PubMed Central  Google Scholar 

  137. Tyynismaa, H. et al. Mitochondrial myopathy induces a starvation-like response. Hum. Mol. Genet. 19, 3948–3958 (2010).

    CAS  PubMed  Google Scholar 

  138. Deng, J. et al. RNA-seq profiling, and impaired autophagic process in skeletal muscle of MELAS. Biochem. Biophys. Res. Commun. 523, 91–97 (2020).

    CAS  PubMed  Google Scholar 

  139. Gao, S. et al. Mitochondrion two novel lncRNAs discovered in human mitochondrial DNA using PacBio full-length transcriptome data. Mitochondrion 38, 41–47 (2018).

    CAS  PubMed  Google Scholar 

  140. Shoffner, J. M. et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61, 931–937 (1990).

    CAS  PubMed  Google Scholar 

  141. Goto, Y. I., Nonaka, I. & Horai, S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348, 651–653 (1990).

    CAS  PubMed  Google Scholar 

  142. DiMauro, S. & Garone, C. Historical perspective on mitochondrial medicine. Dev. Disabil. Res. Rev. 16, 106–113 (2010).

    PubMed  Google Scholar 

  143. Pan, T. Modifications and functional genomics of human transfer RNA. Cell Res. 28, 395–404 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Boczonadi, V., Ricci, G. & Horvath, R. Mitochondrial DNA transcription and translation: clinical syndromes. Essays Biochem. 62, 321–340 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Yarham, J. W., Elson, J. L., Blakely, E. L., Mcfarland, R. & Taylor, R. W. Mitochondrial tRNA mutations and disease. Wiley Interdiscip. Rev. RNA 1, 304–324 (2010).

    CAS  PubMed  Google Scholar 

  146. Wong, L.-J. C. et al. Comprehensive scanning of the entire mitochondrial genome for mutations. Clin. Chem. 48, 1901–1912 (2002).

    CAS  PubMed  Google Scholar 

  147. Zheng, G. et al. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12, 835–837 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Wilusz, J. E. Removing roadblocks to deep sequencing of modified RNAs. Nat. Methods 12, 821–822 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Gogakos, T. et al. Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep. 20, 1463–1475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Cozen, A. E. et al. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat. Methods 12, 879–884 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Shigematsu, M. et al. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs. Nucleic Acids Res. 45, e70 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Pinkard, O., McFarland, S., Sweet, T. & Coller, J. Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation. Nat. Commun. 11, 1–15 (2020).

    Google Scholar 

  153. James-Bott, A. & Cribbs, A. P. tRNAnalysis: a flexible pre-processing and next-generation sequencing data analysis pipeline for transfer RNA. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/655829v1 (2019)

  154. Smith, A. M., Abu-Shumays, R., Akeson, M. & Bernick, D. L. Capture, unfolding, and detection of individual tRNA molecules using a nanopore device. Front. Bioeng. Biotechnol. 3, 1–11 (2015).

    CAS  Google Scholar 

  155. Richter, U. et al. RNA modification landscape of the human mitochondrial tRNALys regulates protein synthesis. Nat. Commun. 9, 1–11 (2018).

    Google Scholar 

  156. Metodiev, M. D. et al. Recessive mutations in TRMT10C cause defects in mitochondrial RNA processing and multiple respiratory chain deficiencies. Am. J. Hum. Genet. 98, 993–1000 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Holzmann, J. et al. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135, 462–474 (2008).

    CAS  PubMed  Google Scholar 

  158. Lehmann, D. et al. Pathogenic mitochondrial mt-tRNA Ala variants are uniquely associated with isolated myopathy. Eur. J. Hum. Genet. 23, 1735–1738 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Taylor, R. W. et al. A homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 41, 1786–1796 (2003).

    CAS  PubMed  Google Scholar 

  160. Meseguer, S. et al. The MELAS mutation m.3243 A>G alters the expression of mitochondrial tRNA fragments. Biochim. Biophys. Acta Mol. Cell Res. 1866, 1433–1449 (2019).

    CAS  PubMed  Google Scholar 

  161. El-Hattab, A. W., Almannai, M. & Scaglia, F. MELAS. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 2001).

  162. Naing, A. et al. Maternally inherited diabetes and deafness (MIDD): diagnosis and management. J. Diabetes Complications 28, 542–546 (2014).

    PubMed  Google Scholar 

  163. Moraes, C. T. et al. Atypical clinical presentations associated with the MELAS mutation at position 3243 of human mitochondrial DNA. Neuromuscul. Disord. 3, 43–50 (1993).

    CAS  PubMed  Google Scholar 

  164. Horga, A. et al. Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia. Brain 137, 3200–3212 (2014).

    PubMed  PubMed Central  Google Scholar 

  165. DiMauro, S. & Hirano, M. MERRF. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 2003).

  166. Rahman, S. et al. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann. Neurol. 39, 343–351 (1996).

    CAS  PubMed  Google Scholar 

  167. Thorburn, D. R., Rahman, J. & Rahman, S. Mitochondrial DNA-associated Leigh syndrome and NARP. in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 2003).

Download references

Acknowledgements

The University College London Hospitals/University College London Queen Square Institute of Neurology sequencing facility receives a proportion of funding from the Department of Health’s National Institute for Health Research Biomedical Research Centres funding scheme. The clinical and diagnostic ‘Rare Mitochondrial Disorders’ Service in London is funded by the UK NHS Highly Specialized Commissioners. The work of R.D.S.P. is supported by a Medical Research Council Clinician Scientist Fellowship (MR/S002065/1). J.V. holds a fellowship from the Health Education England Genomics Education Programme. All authors are supported by a Medical Research Council strategic award to establish an International Centre for Genomic Medicine in Neuromuscular Diseases (ICGNMD) (MR/S005021/1). The authors are grateful for the feedback on the manuscript provided by L. Wilson, research manager for the ICGNMD, and for the expert input from R. Labrum and C. Woodward, Neurogenetics Unit, The National Hospital for Neurology and Neurosurgery, London.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the conceptualization and writing of the paper.

Corresponding author

Correspondence to Robert D. S. Pitceathly.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks D. Ghezzi, M. Hirano, E. Morava-Kozicz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Genomics England PanelApp: https://panelapp.genomicsengland.co.uk

MITOMAP: https://www.mitomap.org/MITOMAP

Supplementary information

Glossary

Polycistronic transcript

A transcript that contains the code for more than one polypeptide.

mtDNA maintenance

Continuous re-synthesis of mtDNA by a nuclear-encoded replication apparatus supported by a sustained pool of mitochondrial nucleotides.

Postmitotic tissue

Tissues, such as muscle, that are terminally differentiated and no longer replicate, and therefore are more likely to retain pathogenic mtDNA variants than mitotic tissue.

Deep sequencing

Sequencing a DNA locus many more times than in standard NGS, enabling low levels of alternative alleles (heteroplasmy and mosaicism) to be identified.

Next-generation sequencing

(NGS). A process by which DNA is fragmented into short molecules and denatured; millions of sequencing reactions (addition of fluorescence-labelled nucleotides to form a complementary strand) then occur concurrently and the short sequences or ‘reads’ generated are mapped to a reference genome.

Short reads

The fragments of genetic sequence generated in NGS; typically ~150 bp in length.

Structural variants

(SVs). Large genetic variants such as copy number variants (deletions and duplications), inversions, and translocations, typically >1,000 bp.

Phase

The homologous chromosome of origin (either maternal or paternal).

Epigenetic modifications

Chemical modifications to DNA or the histone molecules around which DNA is packaged; they do not change the genetic code, but can alter gene expression.

Whole-exome trio

Sequencing and comparison of the coding DNA of an affected proband and the proband’s unaffected parents.

Restriction fragment length polymorphism

Differences between individuals in the length of DNA fragments produced by restriction enzymes; the presence of a mutation can create or remove a restriction site.

mtDNA large-scale rearrangement

A rearrangement, typically a deletion and/or duplication, of >1,000 bp in mitochondrial DNA.

Long-range PCR

PCR amplification of mtDNA as one or two fragments using specialized polymerase; traditional PCR amplifies shorter fragments of DNA.

Coverage

Refers to the adequate sequencing of a locus; targeted sequencing can have poor uniformity of coverage.

GC content

Proportion of bases that are guanine–cytosine.

Phenocopies

Diseases with clinical presentations that overlap substantially with the disease of interest.

De novo assembly

Assembly of reads into a continuous sequence without the need to align them against a reference sequence.

Homopolymeric regions

Sequences of DNA comprising identical repeated units of sequence.

Contigs

Consensus sequences comprising overlapping short sequence reads.

Imprinted genes

Genes that are expressed from only one parental origin; the silenced parental copy is said to be ‘imprinted’.

Adaptor ligation

A short synthetic DNA molecule added to the end of the DNA fragment to enable sequencing of that fragment.

Anticodon

The three-nucleotide sequence in tRNA, which is complementary to a codon in mRNA.

Wobble position

The third nucleotide in the anticodon; the Watson–Crick base pairing here is less specific than usual and atypical pairing can occur.

Cybrids

Cell lines created by fusing an enucleated cell (only containing mtDNA) with a nucleated cell, which can contain nDNA and mtDNA or be modified to contain only nDNA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macken, W.L., Vandrovcova, J., Hanna, M.G. et al. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat Rev Neurol 17, 215–230 (2021). https://doi.org/10.1038/s41582-021-00455-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00455-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing