Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

O2-controllable hydrogels for studying cellular responses to hypoxic gradients in three dimensions in vitro and in vivo

Abstract

Oxygen (O2) acts as a potent upstream regulator of cell function. In both physiological and pathophysiological microenvironments, the O2 concentration is not uniformly distributed but instead follows a gradient that depends on distance from oxygen-carrying blood vessels. Such gradients have a particularly important role in development, tissue regeneration, and tumor growth. In this protocol, we describe how to use our previously reported gelatin-based O2-controllable hydrogels that can provide hypoxic microenvironments in vitro. The hydrogel polymeric network is formed via a laccase-mediated cross-linking reaction. In this reaction, laccase catalyzes diferulic acid (diFA) formation to form hydrogels with an O2-consuming reaction. Cells, such as cancer or endothelial cells, as well as tumor/tissue grafts, can be encapsulated in the hydrogels during hydrogel formation and then analyzed for cellular responses to 3D hypoxic gradients and to elucidate the underlying mechanisms governing these responses. Importantly, oxygen gradients can be precisely controlled in standard cell/tissue culture conditions and in vivo. This platform has been applied to study vascular morphogenesis in response to hypoxia and to understand how oxygen gradients mediate cancer cell behavior. Herein, we describe the means to validate the assay from polymer synthesis and characterization—which take 1–2 weeks and include verification of ferulic acid (FA) conjugation, rheological measurements, and O2 monitoring—to the study of cellular responses and use in rodent models. Time courses for biological experiments using this hydrogel are variable, and thus they may range from hours to weeks, depending on the application and user end goal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the Gel-HI hydrogels for in vitro and in vivo applications.
Figure 2: Gtn-HI hydrogel preparation for in vitro 3D tissue/biopsy culture.
Figure 3: Real-time oxygen monitoring system.
Figure 4: Tubulogenesis in Gel-HI.
Figure 5: Tumor encapsulation and tracking.
Figure 6: Tumor encapsulation and tracking.
Figure 7: Subcutaneous and intramuscular in vivo oxygen sensing.
Figure 8: Application of Gtn-HI hydrogels for in vivo vascular tissue recruitment.

Similar content being viewed by others

References

  1. Brizel, D.M. et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 56, 941–943 (1996).

    CAS  PubMed  Google Scholar 

  2. Mori, R. et al. The relationship between proangiogenic gene expression levels in prostate cancer and their prognostic value for clinical outcomes. Prostate 70, 1692–1700 (2010).

    Article  CAS  Google Scholar 

  3. Koukourakis, M.I. et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 53, 1192–1202 (2002).

    Article  CAS  Google Scholar 

  4. Bertout, J.A., Patel, S.A. & Simon, M.C. The impact of O2 availability on human cancer. Nat. Rev. Cancer 8, 967–975 (2008).

    Article  CAS  Google Scholar 

  5. Lewis, D.M. et al. Intratumoral oxygen gradients mediate sarcoma cell invasion. Proc. Natl. Acad. Sci. 113, 9292–9297 (2016).

    Article  CAS  Google Scholar 

  6. Chaturvedi, P. et al. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J. Clin. Invest. 123, 189–205 (2013).

    Article  CAS  Google Scholar 

  7. Eisinger-Mathason, T.K. et al. Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis. Cancer Discov. 3, 1190–1205 (2013).

    Article  CAS  Google Scholar 

  8. Carmeliet, P. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485–490 (1998).

    Article  CAS  Google Scholar 

  9. Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  Google Scholar 

  10. Kvanta, A., Algvere, P., Berglin, L. & Seregard, S. Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest. Ophthalmol. Vis. Sci. 37, 1929–1934 (1996).

    CAS  PubMed  Google Scholar 

  11. Lin, C.-H. et al. Silibinin inhibits VEGF secretion and age-related macular degeneration in a hypoxia-dependent manner through the PI-3 kinase/Akt/mTOR pathway. Br. J. Pharmacol. 168, 920–931 (2013).

    Article  CAS  Google Scholar 

  12. Stefánsson, E., Geirsdóttir, Á. & Sigurdsson, H. Metabolic physiology in age related macular degeneration. Prog. Ret. Eye Res. 30, 72–80 (2011).

    Article  Google Scholar 

  13. Lewis, D.M., Abaci, H.E., Xu, Y. & Gerecht, S. Endothelial progenitor cell recruitment in a microfluidic vascular model. Biofabrication 7, 045010 (2015).

    Article  Google Scholar 

  14. Arnould, T., Michiels, C. & Remacle, J. Increased PMN adherence on endothelial cells after hypoxia: involvement of PAF, CD18/CD11b, and ICAM-1. Am. J. Physiol. 264, C1102–1110 (1993).

    Article  CAS  Google Scholar 

  15. Luster, A.D., Alon, R. & von Andrian, U.H. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6, 1182–1190 (2005).

    Article  CAS  Google Scholar 

  16. Craig, R., Schofield, J. & Jackson, S. Collagen biosynthesis in normal human skin, normal and hypertrophic scar and keloid. Eur. J. Clin. Invest. 5, 69–74 (1975).

    Article  CAS  Google Scholar 

  17. Botusan, I.R. et al. Stabilization of HIF-1α is critical to improve wound healing in diabetic mice. Proc. Natl. Acad. Sci. 105, 19426–19431 (2008).

    Article  CAS  Google Scholar 

  18. Ramirez-Bergeron, D.L. & Simon, M.C. Hypoxia-inducible factor and the development of stem cells of the cardiovascular system. Stem Cells 19, 279–286 (2001).

    Article  CAS  Google Scholar 

  19. Licht, A.H., Muller-Holtkamp, F., Flamme, I. & Breier, G. Inhibition of hypoxia-inducible factor activity in endothelial cells disrupts embryonic cardiovascular development. Blood 107, 584–590 (2006).

    Article  CAS  Google Scholar 

  20. Krock, B.L., Skuli, N. & Simon, M.C. Hypoxia-induced angiogenesis good and evil. Genes Cancer 2, 1117–1133 (2011).

    Article  Google Scholar 

  21. Kusuma, S., Peijnenburg, E., Patel, P. & Gerecht, S. Low oxygen tension enhances endothelial fate of human pluripotent stem cells. Arterioscler., Thromb., Vasc. Biol. 34, 913–920 (2014).

    Article  CAS  Google Scholar 

  22. Lee, Y.M. et al. Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev. Dyn. 220, 175–186 (2001).

    Article  CAS  Google Scholar 

  23. Liu, Y., Cox, S.R., Morita, T. & Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells identification of a 5′ enhancer. Circ. Res. 77, 638–643 (1995).

    Article  CAS  Google Scholar 

  24. Covello, K.L. & Simon, M.C. HIFs, hypoxia, and vascular development. Curr. Top. Dev. Biol. 62, 37–54 (2004).

    Article  CAS  Google Scholar 

  25. Pugh, C.W. & Ratcliffe, P.J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9, 677–684 (2003).

    Article  CAS  Google Scholar 

  26. Marti, H.J. et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am. J. Pathol. 156, 965–976 (2000).

    Article  CAS  Google Scholar 

  27. Oppegard, S.C., Nam, K.H., Carr, J.R., Skaalure, S.C. & Eddington, D.T. Modulating temporal and spatial oxygenation over adherent cellular cultures. PLoS One 4, 8 (2009).

    Article  Google Scholar 

  28. Rexius-Hall, M.L., Mauleon, G., Malik, A.B., Rehman, J. & Eddington, D.T. Microfluidic platform generates oxygen landscapes for localized hypoxic activation. Lab Chip 14, 4688–4695 (2014).

    Article  CAS  Google Scholar 

  29. Adler, M., Polinkovsky, M., Gutierrez, E. & Groisman, A. Generation of oxygen gradients with arbitrary shapes in a microfluidic device. Lab Chip 10, 388–391 (2010).

    Article  CAS  Google Scholar 

  30. Chen, Y.A. et al. Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions. Lab Chip 11, 3626–3633 (2011).

    Article  CAS  Google Scholar 

  31. Funamoto, K. et al. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Lab Chip 12, 4855–4863 (2012).

    Article  CAS  Google Scholar 

  32. Oppegard, S.C. & Eddington, D.T. A microfabricated platform for establishing oxygen gradients in 3-D constructs. Biomed. Microdevices 15, 407–414 (2013).

    Article  CAS  Google Scholar 

  33. DelNero, P. et al. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways. Biomaterials 55, 110–118 (2015).

    Article  CAS  Google Scholar 

  34. Rodenhizer, D. et al. A three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients. Nat. Mater. 15, 227–234 (2016).

    Article  CAS  Google Scholar 

  35. Wu, D. & Yotnda, P. Induction and testing of hypoxia in cell culture. J. Vis. Exp. (54), 2899 (2011).

    Google Scholar 

  36. Lin, X. et al. Oxygen-induced cell migration and on-line monitoring biomarkers modulation of cervical cancers on a microfluidic system. Sci. Rep. 5, 9643 (2015).

    Article  CAS  Google Scholar 

  37. Allen, C.B., Schneider, B.K. & White, C.W. Limitations to oxygen diffusion and equilibration in in vitro cell exposure systems in hyperoxia and hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L1021–L1027 (2001).

    Article  CAS  Google Scholar 

  38. Park, K.M. & Gerecht, S. Hypoxia-inducible hydrogels. Nat. Commun. 5, 4075 (2014).

    Article  CAS  Google Scholar 

  39. Hanjaya-Putra, D. et al. Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 118, 804–815 (2011).

    Article  CAS  Google Scholar 

  40. Davis, G.E. & Senger, D.R. Endothelial extracellular matrix - biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97, 1093–1107 (2005).

    Article  CAS  Google Scholar 

  41. Davis, G.E., Bayless, K.J. & Mavila, A. Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat. Rec. 268, 252–275 (2002).

    Article  CAS  Google Scholar 

  42. Chan, X.Y. et al. Three-dimensional vascular network assembly from diabetic patient-derived induced pluripotent stem cells. Arterioscler., Thromb., Vasc. Biol. 35, 2677–2685 (2015).

    Article  CAS  Google Scholar 

  43. Blatchley, M., Park, K.M. & Gerecht, S. Designer hydrogels for precision control of oxygen tension and mechanical properties. J. Mater. Chem. B 3, 7939–7949 (2015).

    Article  CAS  Google Scholar 

  44. Higuchi, A., Ling, Q.D., Hsu, S.T. & Umezawa, A. Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem. Rev. 112, 4507–4540 (2012).

    Article  CAS  Google Scholar 

  45. Paguirigan, A.L. & Beebe, D.J. Protocol for the fabrication of enzymatically crosslinked gelatin microchannels for microfluidic cell culture. Nat. Protoc. 2, 1782–1788 (2007).

    Article  CAS  Google Scholar 

  46. Yung, C.W. et al. Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J. Biomed. Mater. Res. Part A 83A, 1039–1046 (2007).

    Article  CAS  Google Scholar 

  47. Loessner, D. et al. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat. Protoc. 11, 727–746 (2016).

    Article  CAS  Google Scholar 

  48. Minussi, R.C., Pastore, G.M. & Duran, N. Potential applications of laccase in the food industry. Trends Food Sci. Technol. 13, 205–216 (2002).

    Article  CAS  Google Scholar 

  49. Mozaffarian, D. et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133, e38 (2016).

    Google Scholar 

  50. Gaengel, K., Genove, G., Armulik, A. & Betsholtz, C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 29, 630–638 (2009).

    Article  CAS  Google Scholar 

  51. Carmeliet, P. & Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  Google Scholar 

  52. Semenza, G.L. Vascular responses to hypoxia and ischemia. Arterioscler. Thromb. Vasc. Biol. 30, 648–652 (2010).

    Article  CAS  Google Scholar 

  53. Bayless, K.J., Kwak, H.I. & Su, S.C. Investigating endothelial invasion and sprouting behavior in three-dimensional collagen matrices. Nat. Protoc. 4, 1888–1898 (2009).

    Article  CAS  Google Scholar 

  54. Yoon, S.S. et al. Efficacy of sunitinib and radiotherapy in genetically engineered mouse model of soft-tissue sarcoma. Int. J. Radiat. Oncol. Biol. Phys. 74, 1207–1216 (2009).

    Article  CAS  Google Scholar 

  55. Kirsch, D.G. et al. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nat. Med. 13, 992–997 (2007).

    Article  CAS  Google Scholar 

  56. Wu, P.-H., Giri, A. & Wirtz, D. Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model. Nat. Protoc. 10, 517–527 (2015).

    Article  CAS  Google Scholar 

  57. Koh, M.Y. & Powis, G. Passing the baton: the HIF switch. Trends Biochem. Sci. 37, 364–372 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a fellowship from the National Cancer Institute (NCI; T-32 2T32CA153952-06), a Nanotechnology Cancer Research training grant (to D.M.L.), the American Heart Association (15EIA22530000), a President's Frontier Award from Johns Hopkins University, and Project 3 of the NCI Physical Sciences-Oncology Center (U54CA210173 to S.G.).

Author information

Authors and Affiliations

Authors

Contributions

D.M.L., M.R.B., and K.M.P. developed, tested, applied, and validated the Gel-HI hydrogel system; D.M.L., M.R.B., and K.M.P. performed the experiments; D.M.L., M.R.B., K.M.P., and S.G. designed the experiments, analyzed the results, and wrote the paper.

Corresponding author

Correspondence to Sharon Gerecht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Characterization of Gtn–FA conjugate

1H NMR spectra of GtnFA (red) and Gtn (blue) (300 MHz, D2O, 25 °C): a, δ6.48 (d, 1H); b, δ7.45 (d, 1H); c, δ7.16 (d, 1H); d, δ6.99 (d, 1H); e, δ6.89 (d, 1H). Reproduced with permission from Park and Gerecht (ref. 38), Nature Publishing Group.

Supplementary information

Supplementary Figure 1.

Characterization of the Gtn–FA conjugate. 1H NMR spectra of Gtn–FA (red) and Gtn (blue) (300 MHz, D2O, 25 °C): a, δ6.48 (d, 1H); b, δ7.45 (d, 1H); c, δ7.16 (d, 1H); d, δ6.99 (d, 1H); e, δ6.89 (d, 1H). Reproduced with permission from Park and Gerecht (ref. 38), Nature Publishing Group. (PDF 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, D., Blatchley, M., Park, K. et al. O2-controllable hydrogels for studying cellular responses to hypoxic gradients in three dimensions in vitro and in vivo. Nat Protoc 12, 1620–1638 (2017). https://doi.org/10.1038/nprot.2017.059

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.059

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer