Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Spinal cord regeneration in Xenopus laevis

Abstract

Here we present a protocol for the husbandry of Xenopus laevis tadpoles and froglets, and procedures to study spinal cord regeneration. This includes methods to induce spinal cord injury (SCI); DNA and morpholino electroporation for genetic studies; in vivo imaging for cell analysis; a swimming test to measure functional recovery; and a convenient model for screening for new compounds that promote neural regeneration. These protocols establish X. laevis as a unique model organism for understanding spinal cord regeneration by comparing regenerative and nonregenerative stages. This protocol can be used to understand the molecular and cellular mechanisms involved in nervous system regeneration, including neural stem and progenitor cell (NSPC) proliferation and neurogenesis, extrinsic and intrinsic mechanisms involved in axon regeneration, glial response and scar formation, and trophic factors. For experienced personnel, husbandry takes 1–2 months; SCI can be achieved in 5–15 min; and swimming recovery takes 20–30 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spinal cord transection surgery in stage 50 larvae.
Figure 2: Spinal cord transection surgery in stage 66 froglets.
Figure 3: Swimming behavior test.
Figure 4: Platinum electrodes for larvae electroporation.
Figure 5: Sox3pXt-GFP+ cells after spinal cord electroporation.

Similar content being viewed by others

References

  1. Thuret, S., Moon, L. & Gage, F. Therapeutic interventions after spinal cord injury. Nat. Rev. Neurosci. 7, 628–643 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. Lee-Liu, D., Edwards-Faret, G., Tapia, V.S. & Larraín, J. Spinal cord regeneration: lessons for mammals from non-mammalian vertebrates. Genesis 51, 529–544 (2013).

    Article  PubMed  Google Scholar 

  3. Diaz Quiroz, J.F. & Echeverri, K. Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow? Biochem. J. 451, 353–364 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. Sims, R.T. Transection of the spinal cord in developing Xenopus laevis. J. Embryol. Exp. Morphol. 10, 115–126 (1962).

    PubMed  CAS  Google Scholar 

  5. Michel, M.E. & Reier, P.J. Axonal-ependymal associations during early regeneration of the transected spinal cord in Xenopus laevis tadpoles. J. Neurocytol. 8, 529–548 (1979).

    Article  PubMed  CAS  Google Scholar 

  6. Filoni, S., Bosco, L. & Cioni, C. Reconstitution of the spinal cord after ablation in larval Xenopus laevis. Acta Embryol. Morphol. Exp. 5, 109–129 (1984).

    Google Scholar 

  7. Beattie, M.S., Bresnahan, J.C. & Lopate, G. Metamorphosis alters the response to spinal cord transection in Xenopus laevis frogs. J. Neurobiol. 21, 1108–1122 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. Gibbs, K.M., Chittur, S.V. & Szaro, B.G. Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis. Eur. J. Neurosci. 33, 9–25 (2011).

    Article  PubMed  Google Scholar 

  9. Gaete, M. et al. Spinal cord regeneration in Xenopus tadpole proceeds through activation of Sox2-positive cells. Neural Dev. 7, 13 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Muñoz, R. et al. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells. Dev. Biol. 408, 229–243 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lee-Liu, D. et al. Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages. Neural Dev. 9, 12 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nieuwkoop, P.D. & Faber, J. Normal Table of Xenopus laevis (Daudin). New York: Garland Publishing, 1994.

  13. Gargioli, C. & Slack, J.M. Cell lineage tracing during Xenopus tail regeneration. Development 131, 2669–2679 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. Love, N.R. et al. Genome-wide analysis of gene expression during Xenopus tropicalis tadpole tail regeneration. BMC Dev. Biol. 11, 70 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Contreras, E.G., Gaete, M., Sánchez, N., Carrasco, H. & Larraín, J. Early requirement of hyaluronan for tail regeneration in Xenopus tadpoles. Development 136, 2987–2996 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. Lukovic, D. et al. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation. Sci. Rep. 10, 9640 (2015).

    Article  CAS  Google Scholar 

  17. Metz, G.A. et al. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J. Neurotrauma 17, 1–17 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. Jakeman, L.B. et al. Traumatic spinal cord injury produced by controlled contusion in mouse. J. Neurotrauma 17, 299–319 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. Nout, Y.S. et al. Animal models of neurologic disorders: a nonhuman primate model of spinal cord injury. Neurotherapeutics 9, 380–392 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sharif-Alhoseini, M. & Rahimi-Movaghar, V. Animal Models in Traumatic Spinal Cord Injury, Topics in Paraplegia. (ed. Dionyssiotis Y.) 211–217 (InTech, 2014).

  21. Buchholz, D.R. More similar than you think: frog metamorphosis as a model of human perinatal endocrinology. Dev. Biol. 408, 188–195 (2015).

    Article  PubMed  CAS  Google Scholar 

  22. Gearhart, J., Oster-Granite, M.L. & Guth, L.L. Histological changes after transection of the spinal cord of fetal and neonatal mice. Exp. Neurol. 66, 1–15 (1979).

    Article  PubMed  CAS  Google Scholar 

  23. Becker, T. et al. Readiness of zebrafish brain neurons to regenerate a spinal axon correlates with differential expression of specific cell recognition molecules. J. Neurosci. 18, 5789–5803 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Reimer, M.M. et al. Motor neuron regeneration in adult zebrafish. J. Neurosci. 28, 8510–8516 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. O'Hara, C.M., Egar, M.W. & Chernoff, E.A. Reorganization of the ependyma during axolotl spinal cord regeneration: changes in intermediate filament and fibronectin expression. Dev. Dyn. 193, 103–115 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. Zukor, K.A., Kent, D.T. & Odelberg, S.J. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts. Neural Dev. 6, 1 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chernoff, E.A. Spinal cord regeneration: a phenomenon unique to urodeles? Int. J. Dev. Biol. 40, 823–831 (1996).

    PubMed  CAS  Google Scholar 

  28. Becker, T., Wullimann, M.F., Becker, C.G., Bernhardt, R.R. & Schachner, M. Axonal regrowth after spinal cord transection in adult zebrafish. J. Comp. Neurol. 377, 577–595 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. Kundi, S., Bicknell, R. & Ahmed, Z. Spinal cord injury: current mammalian models. Am. J. Neurosci. 3, 1–12 (2013).

    Google Scholar 

  30. Cheriyan, T. et al. Spinal cord injury models: a review. Spinal Cord 52, 588–595 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. Singh, A., Tetreault, L., Kalsi-Ryan, S., Nouri, A. & Fehlings, M.G. Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 6, 309–331 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. Yisheng, W. et al. First aid and treatment for cervical spinal cord injury with fracture and dislocation. Indian J. Orthop. 41, 300–304 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Nakae, A. et al. The animal model of spinal cord injury as an experimental pain model. J. Biomed. Biotechnol. 2011, 939023 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cline, H.T. & Kelly, D. Xenopus as an experimental system for developmental neuroscience: introduction to a special issue. Dev. Neurobiol. 72, 463–464 (2012).

    Article  PubMed  Google Scholar 

  35. Karpinka, J.B. et al. Xenbase, the Xenopus model organism database; new virtualized system, data types and genomes. Nucleic Acids Res. 43, 756–763 (2015).

    Article  CAS  Google Scholar 

  36. James-Zorn, C. et al. Xenbase: core features, data acquisition, and data processing. Genesis 53, 486–497 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Session, A.M., Kwon, T., Chapman, J.A. et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kroll, K.L. & Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 173–183 (1996).

    Article  Google Scholar 

  39. Ishibashi, S., Kroll, K.L. & Amaya, E. A method for generating transgenic frog embryos. Methods Mol. Biol. 461, 447–466 (2008).

    Article  PubMed  CAS  Google Scholar 

  40. Harland, R.M. & Grainger, R.M. Xenopus research: metamorphosed by genetics and genomics. Trends Genet. 27, 507–515 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Blitz, I.L., Biesinger, J., Xie, X. & Cho, K.W. Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis 51, 827–834 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Nakayama, T. et al. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51, 835–843 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wang, F. et al. Targeted gene disruption in Xenopus laevis using CRISPR/Cas9. Cell Biosci. 5, 15 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Bhattacharya, D., Marfo, C.A., Li, D., Lane, M. & Khokha, M.K. CRISPR/Cas9: an inexpensive, efficient loss of function tool to screen human disease genes in Xenopus. Dev. Biol. 408, 30269–30264 (2015).

    Article  CAS  Google Scholar 

  45. McKeown, C.R., Sharma, P., Sharipov, H.E., Shen, W. & Cline, H.T. Neurogenesis is required for behavioral recovery after injury in the visual system of Xenopus laevis. J. Comp. Neurol. 521, 2262–2278 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bestman, J.E., Ewald, R.C., Chiu, S.L. & Cline, H.T. In vivo single-cell electroporation for transfer of DNA and macromolecules. Nat. Protoc. 1, 1267–1272 (2006).

    Article  PubMed  CAS  Google Scholar 

  47. Sive, H.L., Grainger, R.M. & Harland, R.M. Early Development of Xenopus laevis: A Laboratory Manual. (eds. Sive, H.L., Grainger, R.M., Harland, R.M.) 4–5 (Cold Spring Harbor, NY: Cold Spring Harbor Press, 2000).

  48. Green, S.L. The Laboratory Xenopus sp. 19–24 (Boca Raton, FL: Taylor & Francis Group/CRC Press, 2010).

  49. Javaherian, A. & Cline, H.T. Coordinated motor neuron axon growth and neuromuscular synaptogenesis are promoted by CPG15 in vivo. Neuron 17, 505–512 (2005).

    Article  CAS  Google Scholar 

  50. Diaz-Quiroz, J.F. & Echeverri, K. In vivo modulation of microRNA levels during spinal cord regeneration. Lab. Methods Cell Biol. Vol. 112 (ed. Coon, M.) 235–246 (Elsevier, 2012).

  51. Tanaka, EM. & Ferretti, P. Considering the evolution of regeneration in the central nervous system. Nat. Rev. Neurosci. 10, 713–723 (2009).

    Article  PubMed  CAS  Google Scholar 

  52. Fei, J.F. et al. CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem Cell Rep. 3, 444–459 (2014).

    Article  CAS  Google Scholar 

  53. Ogai, K. et al. Function of Sox2 in ependymal cells of lesioned spinal cords in adult zebrafish. Neurosci. Res. 88, 84–87 (2014).

    Article  PubMed  CAS  Google Scholar 

  54. Nye, H.L. & Cameron, J.A. Strategies to reduce variation in Xenopus regeneration studies. Dev. Dyn. 234, 151–158 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratory for their support, and especially our dedicated animal caretaker A. Farias. We thank H.T. Cline (The Scripps Research Institute) for our collaborative work with two-photon microscopy. This work was supported by funds from the CARE Chile UC-Centro de Envejecimiento y Regeneración (PFB 12/2007), MINREB (RC120003), FONDECYT (1141162), and ICGEB (CRP/CHI-13-01), FONDEF Idea (ID15I10349) to J.L. and Gastos Operacionales (21110043) to G.E.-F. G.E.-F., D.L.-L. and E.E.M.-O. are CONICYT PhD fellows.

Author information

Authors and Affiliations

Authors

Contributions

G.E.-F., R.M., E.E.M.-O., D.L.-.L. and V.S.T. contributed to developing and improving the protocols described here. G.E.-F. prepared the figures and videos. G.E.-F. and J.L. conceived and wrote the paper.

Corresponding author

Correspondence to Juan Larraín.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Spinal cord injury in Xenopus laevis larvae.

Video explains surgery to induce spinal cord injury and the control sham surgery in larvae (Steps 10–12). (AVI 26179 kb)

Spinal cord injury in Xenopus laevis froglets.

Video explains surgery to induce spinal cord injury and the control sham surgery in froglets (Steps 16–20). (AVI 20720 kb)

Intracoelomic injections in Xenopus laevis larvae.

Video explains the intracoelomic injection of small molecules into larvae (Steps 25A(viii) and Box 1). (AVI 6844 kb)

Intracoelomic injections in Xenopus laevis froglets.

Video explains the intracoelomic injection of small molecules into froglets (Box 1). (AVI 6214 kb)

Spinal cord dissection for whole-mount immunofluorescence.

Video explains larva spinal cord dissection for whole-mount immunofluorescence (Steps 25A(xi–xvi)). (AVI 22272 kb)

Spinal cord isolation from Xenopus laevis larvae.

Video explains spinal cord isolation for -omics analysis in larvae (Box 3, step 4A). (AVI 17736 kb)

Spinal cord isolation from Xenopus laevis froglets.

Video explains spinal cord isolation for -omics analysis in froglets (Box 3, step 4B). (AVI 23323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards-Faret, G., Muñoz, R., Méndez-Olivos, E. et al. Spinal cord regeneration in Xenopus laevis. Nat Protoc 12, 372–389 (2017). https://doi.org/10.1038/nprot.2016.177

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.177

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing