Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Antibody modeling using the Prediction of ImmunoGlobulin Structure (PIGS) web server

An Erratum to this article was published on 26 March 2015

This article has been updated

Abstract

Antibodies (or immunoglobulins) are crucial for defending organisms from pathogens, but they are also key players in many medical, diagnostic and biotechnological applications. The ability to predict their structure and the specific residues involved in antigen recognition has several useful applications in all of these areas. Over the years, we have developed or collaborated in developing a strategy that enables researchers to predict the 3D structure of antibodies with a very satisfactory accuracy. The strategy is completely automated and extremely fast, requiring only a few minutes (10 min on average) to build a structural model of an antibody. It is based on the concept of canonical structures of antibody loops and on our understanding of the way light and heavy chains pack together.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Antibody structure.
Figure 2: Global r.m.s.d. distribution after cross-validation of the PIGS antibody structural data set.
Figure 3: Antigen-binding site r.
Figure 4: PIGS protocol workflow for predicting the structure of immunoglobulins.
Figure 5: Screenshot of the 'Template Selection' page and 'Target Alignment'.
Figure 6: The 13PL structural model obtained after implementation of the present protocol.

Accession codes

Accessions

Protein Data Bank

Change history

  • 21 November 2014

     In the version of this article initially published online, the title was incorrect and was changed to read as follows: ‘Antibody modeling using the Prediction of ImmunoGlobulin Structure (PIGS) web server’. The error has been corrected for the PDF and HTML versions of this article.

References

  1. 1

    Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109 (suppl.): S45–S55 (2002).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Li, Z., Woo, C.J., Iglesias-Ussel, M.D., Ronai, D. & Scharff, M.D. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 18, 1–11 (2004).

    PubMed  Article  Google Scholar 

  3. 3

    Schatz, D.G. & Ji, Y. Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 11, 251–263 (2011).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Padlan, E.A. Anatomy of the antibody molecule. Mol. Immunol. 31, 169–217 (1994).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Mariuzza, R.A., Phillips, S.E. & Poljak, R.J. The structural basis of antigen-antibody recognition. Annu. Rev. Biophys. Biophys. Chem. 16, 139–159 (1987).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Wu, T.T. & Kabat, E.A. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J. Exp. Med. 132, 211–250 (1970).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Collis, A.V., Brouwer, A.P. & Martin, A.C. Analysis of the antigen combining site: correlations between length and sequence composition of the hypervariable loops and the nature of the antigen. J. Mol. Biol. 325, 337–354 (2003).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Kuroda, D., Shirai, H., Jacobson, M.P. & Nakamura, H. Computer-aided antibody design. Protein Eng. Des. Sel. 25, 507–521 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Pedotti, M., Simonelli, L., Livoti, E. & Varani, L. Computational docking of antibody-antigen complexes, opportunities and pitfalls illustrated by influenza hemagglutinin. Int. J. Mol. Sci. 12, 226–251 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Lippow, S.M., Wittrup, K.D. & Tidor, B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat. Biotechnol. 25, 1171–1176 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Kettleborough, C.A., Saldanha, J., Heath, V.J., Morrison, C.J. & Bendig, M.M. Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation. Protein Eng. 4, 773–783 (1991).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Almagro, J.C. & Fransson, J. Humanization of antibodies. Front. Biosci. 13, 1619–1633 (2008).

    CAS  PubMed  Google Scholar 

  14. 14

    Kuramochi, T., Igawa, T., Tsunoda, H. & Hattori, K. Humanization and simultaneous optimization of monoclonal antibody. Methods Mol. Biol. 1060, 123–137 (2014).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Lauer, T.M. et al. Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J. Pharm. Sci. 101, 102–115 (2012).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Marcatili, P. et al. Igs expressed by chronic lymphocytic leukemia B cells show limited binding-site structure variability. J. Immunol. 190, 5771–5778 (2013).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Zibellini, S. et al. Stereotyped patterns of B cell receptor in splenic marginal zone lymphoma. Haematologica 95, 1792–1796 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Padlan, E.A. & Davies, D.R. Variability of three-dimensional structure in immunoglobulins. Proc. Natl. Acad. Sci. USA 72, 819–823 (1975).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Poljak, R.J. et al. Three-dimensional structure and diversity of immunoglobulins. Cold Spring Harb. Symp. Quant. Biol. 41 Pt 2: 639–645 (1977).

    PubMed  Article  Google Scholar 

  20. 20

    Schroeder, H.W. Jr. & Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 125, S41–S52 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Chothia, C., Novotny, J., Bruccoleri, R. & Karplus, M. Domain association in immunoglobulin molecules. The packing of variable domains. J. Mol. Biol. 186, 651–663 (1985).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Fiser, A., Do, R.K. & Sali, A. Modeling of loops in protein structures. Protein Sci. 9, 1753–1773 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Soto, C.S., Fasnacht, M., Zhu, J., Forrest, L. & Honig, B. Loop modeling: sampling, filtering, and scoring. Proteins 70, 834–843 (2008).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Chothia, C. & Lesk, A.M. Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196, 901–917 (1987).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Chothia, C. et al. Conformations of immunoglobulin hypervariable regions. Nature 342, 877–883 (1989).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Shirai, H., Kidera, A. & Nakamura, H. Structural classification of CDR-H3 in antibodies. FEBS Lett. 399, 1–8 (1996).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Morea, V., Tramontano, A., Rustici, M., Chothia, C. & Lesk, A.M. Conformations of the third hypervariable region in the VH domain of immunoglobulins. J. Mol. Biol. 275, 269–294 (1998).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Oliva, B., Bates, P.A., Querol, E., Aviles, F.X. & Sternberg, M.J. Automated classification of antibody complementarity determining region 3 of the heavy chain (H3) loops into canonical forms and its application to protein structure prediction. J. Mol. Biol. 279, 1193–1210 (1998).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Shirai, H., Nakajima, N., Higo, J., Kidera, A. & Nakamura, H. Conformational sampling of CDR-H3 in antibodies by multicanonical molecular dynamics simulation. J. Mol. Biol. 278, 481–496 (1998).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Kim, S.T., Shirai, H., Nakajima, N., Higo, J. & Nakamura, H. Enhanced conformational diversity search of CDR-H3 in antibodies: role of the first CDR-H3 residue. Proteins 37, 683–696 (1999).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Shirai, H., Kidera, A. & Nakamura, H. H3-rules: identification of CDR-H3 structures in antibodies. FEBS Lett. 455, 188–197 (1999).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Kuroda, D., Shirai, H., Kobori, M. & Nakamura, H. Systematic classification of CDR-L3 in antibodies: implications of the light chain subtypes and the VL-VH interface. Proteins 75, 139–146 (2009).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Chothia, C. et al. Structural repertoire of the human VH segments. J. Mol. Biol. 227, 799–817 (1992).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Tomlinson, I.M., Cox, J.P., Gherardi, E., Lesk, A.M. & Chothia, C. The structural repertoire of the human V kappa domain. EMBO J. 14, 4628–4638 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Chailyan, A., Marcatili, P., Cirillo, D. & Tramontano, A. Structural repertoire of immunoglobulin λ light chains. Proteins 79, 1513–1524 (2011).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Tramontano, A., Chothia, C. & Lesk, A.M. Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins. J. Mol. Biol. 215, 175–182 (1990).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Foote, J. & Winter, G. Antibody framework residues affecting the conformation of the hypervariable loops. J. Mol. Biol. 224, 487–499 (1992).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Martin, A.C. & Thornton, J.M. Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. J. Mol. Biol. 263, 800–815 (1996).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Chothia, C., Gelfand, I. & Kister, A. Structural determinants in the sequences of immunoglobulin variable domain. J. Mol. Biol. 278, 457–479 (1998).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Decanniere, K., Muyldermans, S. & Wyns, L. Canonical antigen-binding loop structures in immunoglobulins: more structures, more canonical classes? J. Mol. Biol. 300, 83–91 (2000).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Vargas-Madrazo, E. & Paz-Garcia, E. Modifications to canonical structure sequence patterns: analysis for L1 and L3. Proteins 47, 250–254 (2002).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    North, B., Lehmann, A. & Dunbrack, R.L. Jr. A new clustering of antibody CDR loop conformations. J. Mol. Biol. 406, 228–256 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    De Wildt, R.M., Hoet, R.M., van Venrooij, W.J., Tomlinson, I.M. & Winter, G. Analysis of heavy and light chain pairings indicates that receptor editing shapes the human antibody repertoire. J. Mol. Biol. 285, 895–901 (1999).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Abhinandan, K.R. & Martin, A.C. Analysis and prediction of VH/VL packing in antibodies. Protein Eng. Des. Sel. 23, 689–697 (2010).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Jayaram, N., Bhowmick, P. & Martin, A.C. Germline VH/VL pairing in antibodies. Protein Eng. Des. Sel. 25, 523–529 (2012).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Dunbar, J., Fuchs, A., Shi, J. & Deane, C.M. ABangle: characterising the VH-VL orientation in antibodies. Protein Eng. Des. Sel. 26, 611–620 (2013).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Almagro, J.C. et al. Antibody modeling assessment. Proteins 79, 3050–3066 (2011).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Zhao, Z., Worthylake, D., LeCour, L. Jr., Maresh, G.A. & Pincus, S.H. Crystal structure and computational modeling of the Fab fragment from a protective anti-ricin monoclonal antibody. PLoS ONE 7, e52613 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Simonelli, L. et al. Rational engineering of a human anti-dengue antibody through experimentally validated computational docking. PLoS ONE 8, e55561 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Chemical Computing Group. Molecular Operating Environment http://www.chemcomp.com/MOE-Protein_and_Antibody_Modeling.html (2012).

  51. 51

    Accelrys Software. Discovery Studio Modeling Environment, Release 3.5. http://accelrys.com/products/discovery-studio/antibody-modeling.html (2012).

  52. 52

    Sircar, A., Kim, E.T. & Gray, J.J. RosettaAntibody: antibody variable region homology modeling server. Nucleic Acids Res. 37, W474–W479 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Almagro, J.C. et al. Antibody Engineering and Therapeutics Conference: the Annual Meeting of the Antibody Society. MAbs 817–825 (2013).

  54. 54

    Wang, F. et al. Reshaping antibody diversity. Cell 153, 1379–1393 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Corti, D. & Lanzavecchia, A. Broadly neutralizing antiviral antibodies. Annu. Rev. Immunol. 31, 705–742 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Pellequer, J.L., Chen, S., Roberts, V.A., Tainer, J.A. & Getzoff, E.D. Unraveling the effect of changes in conformation and compactness at the antibody VL-VH interface upon antigen binding. J. Mol. Recognit. 12, 267–275 (1999).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Silverman, B.D. Using molecular principal axes for structural comparison: determining the tertiary changes of a Fab antibody domain induced by antigenic binding. BMC Struct. Biol. 7, 77 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Babor, M. & Kortemme, T. Multi-constraint computational design suggests that native sequences of germline antibody H3 loops are nearly optimal for conformational flexibility. Proteins 75, 846–858 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Sela-Culang, I., Alon, S. & Ofran, Y. A systematic comparison of free and bound antibodies reveals binding-related conformational changes. J. Immunol. 189, 4890–4899 (2012).

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Marcatili, P., Rosi, A. & Tramontano, A. PIGS: automatic prediction of antibody structures. Bioinformatics 24, 1953–1954 (2008).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Whitelegg, N.R. & Rees, A.R. WAM: an improved algorithm for modelling antibodies on the web. Protein Eng. 13, 819–824 (2000).

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Chailyan, A., Tramontano, A. & Marcatili, P. A database of immunoglobulins with integrated tools: DIGIT. Nucleic Acids Res. 40, D1230–D1234 (2012).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Olimpieri, P.P., Chailyan, A., Tramontano, A. & Marcatili, P. Prediction of site-specific interactions in antibody-antigen complexes: the proABC method and server. Bioinformatics 29, 2285–2291 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Ye, J., Ma, N., Madden, T.L. & Ostell, J.M. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34–W40 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Eddy, S.R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Putnam, F.W., Shinoda, T., Titani, K. & Wikler, M. Immunoglobulin structure: variation in amino acid sequence and length of human λ light chains. Science 157, 1050–1053 (1967).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Al-Lazikani, B., Lesk, A.M. & Chothia, C. Standard conformations for the canonical structures of immunoglobulins. J. Mol. Biol. 273, 927–948 (1997).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Lefranc, M.P. et al. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev. Comp. Immunol. 27, 55–77 (2003).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Almagro, J.C. et al. Second antibody modeling assessment (AMA-II). Proteins 82, 1553–1562 (2014).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Messih, M.A., Lepore, R., Marcatili, P. & Tramontano, A. Improving the accuracy of the structure prediction of the third hypervariable loop of the heavy chains of antibodies. Bioinformatics 30, 2733–2740 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Shirai, H. et al. High-resolution modeling of antibody structures by a combination of bioinformatics, expert knowledge, and molecular simulations. Proteins 82, 1624–1635 (2014).

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Weitzner, B.D., Kuroda, D., Marze, N., Xu, J. & Gray, J.J. Blind prediction performance of RosettaAntibody 3.0: grafting, relaxation, kinematic loop modeling, and full CDR optimization. Proteins 82, 1611–1623 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73

    Chailyan, A., Marcatili, P. & Tramontano, A. The association of heavy and light chain variable domains in antibodies: implications for antigen specificity. FEBS J. 278, 2858–2866 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74

    Krivov, G.G., Shapovalov, M.V. & Dunbrack, R.L. Jr. Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77, 778–795 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Ghiotto, F. et al. Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. J. Clin. Invest. 113, 1008–1016 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Zemla, A. LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res. 31, 3370–3374 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Zhang, Y. & Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins 57, 702–710 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Damle, R.N. et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94, 1840–1847 (1999).

    CAS  PubMed  Google Scholar 

  79. 79

    Hamblin, T.J., Davis, Z., Gardiner, A., Oscier, D.G. & Stevenson, F.K. Unmutated Ig VH genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94, 1848–1854 (1999).

    CAS  PubMed  Google Scholar 

  80. 80

    Grover, R.K. et al. A structurally distinct human mycoplasma protein that generically blocks antigen-antibody union. Science 343, 656–661 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Sanguineti, S. et al. Specific recognition of a DNA immunogen by its elicited antibody. J. Mol. Biol. 370, 183–195 (2007).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all the members of the Sapienza University of Rome Biocomputing Group for their help and assistance. We are thankful to the King Abdullah University of Science and Technology (KAUST) for financial support.

Author information

Affiliations

Authors

Contributions

A.T. conceived the study, participated in its design and coordination, and helped to draft the manuscript. P.M. developed the software. A.C. and P.P.O. contributed to the analysis and interpretation of data and to test the system. All authors participated in drafting the article and revising it critically.

Corresponding author

Correspondence to Anna Tramontano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 RMSD value versus sequence similarity after cross-validation of the PIGS dataset.

The Cα atoms RMSD value for each of the 689 antibody structures in the PIGS dataset with the corresponding models obtained using a leave-one-out procedure is plotted against target–template sequence similarity.

Supplementary Figure 2 RMSD values for all the hypervariable loops except H3 after cross-validation of the PIGS dataset.

Distribution of the Cα RMSD calculated on all the hypervariable loops except H3 for the 689 antibody structures in the PIGS dataset with the corresponding models obtained using a leave-one-out procedure.

Supplementary Figure 3 RMSD values for loop H3 alone after cross-validation of the PIGS dataset.

Distribution of the Cα RMSD calculated on loop H3 alone for the 689 antibody structures in the PIGS dataset with the corresponding models obtained using a leave-one-out procedure.

Supplementary Figure 4 Superimposition of the models and the experimentally solved structure of 13PL antibody obtained following two different modeling strategies.

The cartoon representations of the hypervariable loops of the heavy (H) and light (L) chains obtained using the Same antibody and the Same canonical structure options are respectively blue- and red-colored. The solved structure is shown in grey. The figure was produced with PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC. http://www.pymol.org/).

Supplementary Figure 5 Results of the modeling of the structure of antibody ED-10.

a) The top templates obtained for monoclonal antibody ED-10 before the manual alignment; b) Automatic alignment generated for the heavy chain sequence; c) Manual alignment for the heavy chain; d) the top templates obtained for monoclonal antibody ED-10 after the manual alignment.

Supplementary information

Supplementary Figure 1

RMSD value versus sequence similarity after cross-validation of the PIGS dataset. (PDF 413 kb)

Supplementary Figure 2

RMSD values for all the hypervariable loops except H3 after cross-validation of the PIGS dataset. (PDF 272 kb)

Supplementary Figure 3

RMSD values for loop H3 alone after cross-validation of the PIGS dataset. (PDF 271 kb)

Supplementary Figure 4

Superimposition of the models and the experimentally solved structure of 13PL antibody obtained following two different modeling strategies. (PDF 288 kb)

Supplementary Figure 5

Results of the modeling of the structure of antibody ED-10. (PDF 2355 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marcatili, P., Olimpieri, P., Chailyan, A. et al. Antibody modeling using the Prediction of ImmunoGlobulin Structure (PIGS) web server. Nat Protoc 9, 2771–2783 (2014). https://doi.org/10.1038/nprot.2014.189

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing