Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Ecto-Fc MS identifies ligand-receptor interactions through extracellular domain Fc fusion protein baits and shotgun proteomic analysis

Abstract

Ligand-receptor interactions represent essential biological triggers that regulate many diverse and important cellular processes. We have developed a discovery-based proteomic biochemical protocol that couples affinity purification with multidimensional liquid chromatographic tandem mass spectrometry (LCLC-MS/MS) and bioinformatic analysis. Compared with previous approaches, our analysis increases sensitivity, shortens analysis duration and boosts comprehensiveness. In this protocol, receptor extracellular domains are fused with the Fc region of IgG to generate fusion proteins that are purified from transfected HEK293T cells. These 'ecto-Fcs' are coupled to protein A beads and serve as baits for binding assays with prey proteins extracted from rodent brain. After capture, the affinity-purified proteins are digested into peptides and comprehensively analyzed by LCLC-MS/MS with ion-trap mass spectrometers. In 4 working days, this protocol can generate shortlists of candidate ligand-receptor protein-protein interactions. Our 'ecto-Fc MS' approach outperforms antibody-based approaches and provides a reproducible and robust framework for identifying extracellular ligand-receptor interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the ecto-Fc MS approach to identify ligand-receptor interactions.
Figure 2: Purification and assessment of ecto-Fc bait proteins.
Figure 3: Preparation of Kasil frit and LCLC column.
Figure 4: Ecto-Fc MS can efficiently reveal synaptic adhesion ligand-receptor interactions.
Figure 5: Reciprocal Ecto-Fc MS experiments confirm new interactions.

Similar content being viewed by others

References

  1. Chen, Y., Fournier, A., Couvineau, A., Laburthe, M. & Amiranoff, B. Purification of a galanin receptor from pig brain. Proc. Natl. Acad. Sci. USA 90, 3845–3849 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ichtchenko, K. et al. Neuroligin 1: a splice site-specific ligand for -neurexins. Cell 81, 435–443 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Sugita, S. et al. A stoichiometric complex of neurexins and dystroglycan in brain. J. Cell Biol. 154, 435–445 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Flanagan, J.G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Savas, J.N., Stein, B.D., Wu, C.C. & Yates, J.R. III . Mass spectrometry accelerates membrane protein analysis. Trends Biochem. Sci. 36, 388–396 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Eng, J.K., McCormack, A.L. & Yates, J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spect. 5, 976–989 (1994).

    Article  CAS  Google Scholar 

  7. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Frei, A.P. et al. Direct identification of ligand-receptor interactions on living cells and tissues. Nat. Biotechnol. 30, 997–1001 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Ko, J., Fuccillo, M.V., Malenka, R.C. & Sudhof, T.C. LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron 64, 791–798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Wit, J. et al. Unbiased discovery of glypican as a receptor for LRRTM4 in regulating excitatory synapse development. Neuron 79, 696–711 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Wit, J. et al. LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation. Neuron 64, 799–806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O'Sullivan, M.L. et al. FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73, 903–910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neeper, M. et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 267, 14998–15004 (1992).

    CAS  PubMed  Google Scholar 

  14. Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C.B. & Seed, B. CD44 is the principal cell surface receptor for hyaluronate. Cell 61, 1303–1313 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Ushkaryov, Y.A. et al. Conserved domain structure of β-neurexins. Unusual cleaved signal sequences in receptor-like neuronal cell-surface proteins. J Biol. Chem. 269, 11987–11992 (1994).

    CAS  PubMed  Google Scholar 

  17. Hacker, D.L. et al. Polyethyleneimine-based transient gene expression processes for suspension-adapted HEK-293E and CHO-DG44 cells. Protein Expr. Purif. 92, 67–76 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Link, A.J. et al. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17, 676–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Washburn, M.P., Wolters, D. & Yates, J.R. III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Butko, M.T. et al. In vivo quantitative proteomics of somatosensory cortical synapses shows which protein levels are modulated by sensory deprivation. Proc. Natl. Acad. Sci. USA 110, E726–E735 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Niessen, S., McLeod, I. & Yates, J.R. III . HPLC separation of digested proteins and preparation for matrix-assisted laser desorption/ionization analysis. Cold Spring Harb. Protoc. 2006 (2006).

  22. Xu, T., Wong, C.C., Kashina, A. & Yates, J.R. III. Identification of N-terminally arginylated proteins and peptides by mass spectrometry. Nat. Protoc. 4, 325–332 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yates, J.R. III . et al. Toward objective evaluation of proteomic algorithms. Nat. Methods 9, 455–456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Geer, L.Y. et al. Open mass spectrometry search algorithm. J. Proteome Res. 3, 958–964 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Craig, R. & Beavis, R.C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Carvalho, P.C., Fischer, J.S., Chen, E.I., Yates, J.R. III . & Barbosa, V.C. PatternLab for proteomics: a tool for differential shotgun proteomics. BMC Bioinformatics 9, 316 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cox, J. et al. A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat. Protoc. 4, 698–705 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Clough, T., Thaminy, S., Ragg, S., Aebersold, R. & Vitek, O. Statistical protein quantification and significance analysis in label-free LC-MS experiments with complex designs. BMC Bioinformatics 13 (suppl. 16): S6 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, H., Sadygov, R.G. & Yates, J.R. III . A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 4193–4201 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Paoletti, A.C. et al. Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc. Natl. Acad. Sci. USA 103, 18928–18933 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maiolica, A., Borsotti, D. & Rappsilber, J. Self-made frits for nanoscale columns in proteomics. Proteomics 5, 3847–3850 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Liao, L., McClatchy, D.B. & Yates, J.R. Shotgun proteomics in neuroscience. Neuron 63, 12–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McDonald, W.H. et al. MS1, MS2, and SQT-three unified, compact, and easily parsed file formats for the storage of shotgun proteomic spectra and identifications. Rapid Commun. Mass Spectrom. 18, 2162–2168 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Tabb, D.L., McDonald, W.H. & Yates, J.R. III. DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Siddiqui, T.J. et al. An LRRTM4-HSPG complex mediates excitatory synapse development on dentate gyrus granule cells. Neuron 79, 680–695 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. O'Sullivan, B. Fonslow, B. Stein and J. Moresco, and members of the Yates and Ghosh laboratories for their feedback on the project, and S. Von Daake for suggestions on the manuscript. We thank T. Südhof (Stanford University) for his generosity in providing the original plasmids of β-NRXN1. This plasmid has been modified to accommodate many different genes and suit a variety of applications, but the original high-expression backbone remains unchanged. J.N.S. is supported by a US National Institutes of Health (NIH) Pathway to Independence Award K99DC013805-01. The Yates laboratory is supported by R01 MH068770, P41 GM103533, R01MH100175 and HHSN268201000035C grants from NIH. We also acknowledge support from NIH grants R01NS067216 and R01MH068578 to A.G. and NIH RO1-MH092906 to D.C., as well as the Robert Wood Johnson Foundation (grant no. 67038) for their support of the Child Health Institute of New Jersey. J.D.W. is funded by a NARSAD Young Investigator Award from the Brain and Behavior Research Foundation, a European Research Council (ERC) Starting Grant (no. 311083) and a Research Foundation Flanders (FWO) Odysseus Grant.

Author information

Authors and Affiliations

Authors

Contributions

J.N.S., J.D.W., A.G. and J.R.Y. contributed to the conception and design of the project; J.N.S., J.D.W., D.C. and R.Z. performed the experiments; and J.N.S., J.D.W. and D.C. wrote the manuscript.

Corresponding author

Correspondence to John R Yates III.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savas, J., De Wit, J., Comoletti, D. et al. Ecto-Fc MS identifies ligand-receptor interactions through extracellular domain Fc fusion protein baits and shotgun proteomic analysis. Nat Protoc 9, 2061–2074 (2014). https://doi.org/10.1038/nprot.2014.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.140

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing