Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples

Abstract

Solid-state NMR spectroscopy has been used successfully for characterizing the structure and dynamics of membrane proteins as well as their interactions with other proteins in lipid bilayers. Such an environment is often necessary for achieving native-like structures. Sample preparation is the key to this success. Here we present a detailed description of a robust protocol that results in high-quality membrane protein samples for both magic-angle spinning and oriented-sample solid-state NMR. The procedure is demonstrated using two proteins: CrgA (two transmembrane helices) and Rv1861 (three transmembrane helices), both from Mycobacterium tuberculosis. The success of this procedure relies on two points. First, for samples for both types of NMR experiment, the reconstitution of the protein from a detergent environment to an environment in which it is incorporated into liposomes results in 'complete' removal of detergent. Second, for the oriented samples, proper dehydration followed by rehydration of the proteoliposomes is essential. By using this protocol, proteoliposome samples for magic-angle spinning NMR and uniformly aligned samples (orientational mosaicity of <1°) for oriented-sample NMR can be obtained within 10 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experimental procedure with expected timeline from membrane protein expression to NMR spectroscopy.
Figure 2: Reconstitution of membrane proteins by MβCD.
Figure 3: Detailed procedure for mechanically aligned glass slide–supported OS ssNMR sample preparation of membrane proteins.
Figure 4: Step-by-step procedure for MAS sample transfer to a thin-walled 3.2-mm MAS rotor.
Figure 5: SDS-PAGE (12%) gels illustrating incomplete and good reconstitution.
Figure 6: ssNMR 31P and 15N 1D spectra of uniformly 15N-labeled gramicidin A, CrgA and Rv1861 in lipid bilayers.
Figure 7: Two-dimensional separated local field (SLF) ssNMR spectra of CrgA and Rv1861 in oriented lipid bilayers.
Figure 8: Two-dimensional 13C-13C DARR-MAS spectra of CrgA and Rv1861 in liposomal preparations at 243 K with a 10-kHz spinning rate and 30-ms mixing time.

Similar content being viewed by others

References

  1. Page, R.C., Li, C., Hu, J., Gao, F.P. & Cross, T.A. Lipid bilayers: an essential environment for the understanding of membrane proteins. Magn. Reson. Chem. 45, S2–S11 (2007).

    Article  CAS  Google Scholar 

  2. Dong, H., Sharma, M., Zhou, H.X. & Cross, T.A. Glycines: role in α-helical membrane protein structures and a potential indicator of native conformation. Biochemistry 51, 4779–4789 (2012).

    Article  CAS  Google Scholar 

  3. Zhou, H.X. & Cross, T.A. Influences of membrane mimetic environments on membrane protein structures. Annu. Rev. Biophys. 42, 361–392 (2013).

    Article  CAS  Google Scholar 

  4. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  Google Scholar 

  5. Korepanova, A. et al. Cloning and expression of multiple integral membrane proteins from Mycobacterium tuberculosis in Escherichia coli. Protein Sci. 14, 148–158 (2005).

    Article  CAS  Google Scholar 

  6. Caffrey, M. Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu. Rev. Biophys. 38, 29–51 (2009).

    Article  CAS  Google Scholar 

  7. Separovic, F., Killian, J.A., Cotten, M., Busath, D.D. & Cross, T.A. Modeling the membrane environment for membrane proteins. Biophys. J. 100, 2073–2074 (2011).

    Article  CAS  Google Scholar 

  8. Li, D. et al. Crystal structure of the integral membrane diacylglycerol kinase. Nature 497, 521–524 (2013).

    Article  CAS  Google Scholar 

  9. Chou, J.J., Kaufman, J.D., Stahl, S.J., Wingfield, P.T. & Bax, A. Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel. J. Am. Chem. Soc. 124, 2450–2451 (2002).

    Article  CAS  Google Scholar 

  10. Van Horn, W.D. et al. Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324, 1726–1729 (2009).

    Article  CAS  Google Scholar 

  11. Griffin, R.G. Dipolar recoupling in MAS spectra of biological solids. Nat. Struct. Biol. 5, 508–512 (1998).

    Article  CAS  Google Scholar 

  12. Tang, W., Knox, R.W. & Nevzorov, A.A. A spectroscopic assignment technique for membrane proteins reconstituted in magnetically aligned bicelles. J. Biomol. NMR 54, 307–316 (2012).

    Article  CAS  Google Scholar 

  13. Ketchem, R.R., Hu, W., Tian, F. & Cross, T.A. Structure and dynamics from solid state NMR spectroscopy. Structure 2, 699–701 (1994).

    Article  CAS  Google Scholar 

  14. Sharma, M. et al. Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330, 509–512 (2010).

    Article  CAS  Google Scholar 

  15. Mote, K.R. et al. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers. Journal of Biomolecular NMR 51, 339–346 (2011).

    Article  CAS  Google Scholar 

  16. Nevzorov, A.A. & Opella, S.J. Selective averaging for high-resolution solid-state NMR spectroscopy of aligned samples. J. Magn. Reson. 185, 59–70 (2007).

    Article  CAS  Google Scholar 

  17. Can, T.V. et al. Magic angle spinning and oriented sample solid-state NMR structural restraints combine for influenza A M2 protein functional insights. J. Am. Chem. Soc. 134, 9022–9025 (2012).

    Article  CAS  Google Scholar 

  18. Murray, D.T., Das, N. & Cross, T.A. Solid-state NMR strategy for characterizing native membrane protein structures. Accounts Chem. Res. 46, 2172–2181 (2013).

    Article  CAS  Google Scholar 

  19. Plocinski, P. et al. Mycobacterium tuberculosis CwsA interacts with CrgA and Wag31, and the CrgA-CwsA complex is involved in peptidoglycan synthesis and cell shape determination. J. Bacteriol. 194, 6398–6409 (2012).

    Article  CAS  Google Scholar 

  20. Plocinski, P. et al. Characterization of CrgA, a new partner of the Mycobacterium tuberculosis peptidoglycan polymerization complexes. J. Bacteriol. 193, 3246–3256 (2011).

    Article  CAS  Google Scholar 

  21. Li, C. et al. Uniformly aligned full-length membrane proteins in liquid crystalline bilayers for structural characterization. J. Am. Chem. Soc. 129, 5304–5305 (2007).

    Article  CAS  Google Scholar 

  22. Su, P.C., Si, W., Baker, D.L. & Berger, B.W. High-yield membrane protein expression from E. coli using an engineered outer membrane protein F fusion. Protein Sci. 22, 434–443 (2013).

    Article  CAS  Google Scholar 

  23. Grisshammer, R. Understanding recombinant expression of membrane proteins. Curr. Opin. Biotechnol. 17, 337–340 (2006).

    Article  CAS  Google Scholar 

  24. Zoonens, M. & Miroux, B. Expression of membrane proteins at the Escherichia coli membrane for structural studies. Methods Mol. Biol. 601, 49–66 (2010).

    Article  CAS  Google Scholar 

  25. Hu, J., Qin, H., Gao, F.P. & Cross, T.A. A systematic assessment of mature MBP in membrane protein production: overexpression, membrane targeting and purification. Protein Expr. Purif. 80, 34–40 (2011).

    Article  CAS  Google Scholar 

  26. Mouillac, B. & Baneres, J.L. Mammalian membrane receptors expression as inclusion bodies in Escherichia coli. Methods Mol. Biol. 601, 39–48 (2010).

    Article  CAS  Google Scholar 

  27. Qin, H. et al. Construction of a series of vectors for high throughput cloning and expression screening of membrane proteins from Mycobacterium tuberculosis. BMC Biotechnol. 8, 51 (2008).

    Article  Google Scholar 

  28. Kiefer, H. et al. Expression of an olfactory receptor in Escherichia coli: purification, reconstitution, and ligand binding. Biochemistry 35, 16077–16084 (1996).

    Article  CAS  Google Scholar 

  29. Aslanidis, C. & de Jong, P.J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 18, 6069–6074 (1990).

    Article  CAS  Google Scholar 

  30. Korepanova, A. et al. Expression of membrane proteins from Mycobacterium tuberculosis in Escherichia coli as fusions with maltose binding protein. Protein Expr. Purif. 53, 24–30 (2007).

    Article  CAS  Google Scholar 

  31. Seddon, A.M., Curnow, P. & Booth, P.J. Membrane proteins, lipids and detergents: not just a soap opera. Biochim. Biophys. Acta 1666, 105–117 (2004).

    Article  CAS  Google Scholar 

  32. Rigaud, J.L., Pitard, B. & Levy, D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim. Biophys. Acta 1231, 223–246 (1995).

    Article  Google Scholar 

  33. Rigaud, J.L. & Levy, D. Reconstitution of membrane proteins into liposomes. Methods Enzymol. 372, 65–86 (2003).

    Article  CAS  Google Scholar 

  34. Signorell, G.A., Kaufmann, T.C., Kukulski, W., Engel, A. & Remigy, H.W. Controlled 2D crystallization of membrane proteins using methyl-beta-cyclodextrin. J. Struct. Biol. 157, 321–328 (2007).

    Article  CAS  Google Scholar 

  35. DeGrip, W.J., VanOostrum, J. & Bovee-Geurts, P.H.M. Selective detergent-extraction from mixed detergent/lipid/protein micelles, using cyclodextrin inclusion compounds: a novel generic approach for the preparation of proteoliposomes. Biochem. J. 330, 667–674 (1998).

    Article  CAS  Google Scholar 

  36. Rigaud, J.L., Levy, D., Mosser, G. & Lambert, O. Detergent removal by non-polar polystyrene beads—applications to membrane protein reconstitution and two-dimensional crystallization. Eur. Biophy. J. Biophys. Lett. 27, 305–319 (1998).

    Article  CAS  Google Scholar 

  37. Rigaud, J.L., Mosser, G., Lacapere, J.J., Olofsson, A., Levy, D. & Ranck, J.L. Bio-Beads: an efficient strategy for two-dimensional crystallization of membrane proteins. J. Struct. Biol. 118, 226–235 (1997).

    Article  CAS  Google Scholar 

  38. Kimura, T. et al. Recombinant cannabinoid type 2 receptor in liposome model activates G protein in response to anionic lipid constituents. J. Biol. Chem. 287, 4076–4087 (2012).

    Article  CAS  Google Scholar 

  39. Park, S.H. et al. Optimization of purification and refolding of the human chemokine receptor CXCR1 improves the stability of proteoliposomes for structure determination. Biochim. Biophys. Acta 1818, 584–591 (2012).

    Article  CAS  Google Scholar 

  40. van den Brink-van der Laan, E., Killian, J.A. & de Kruijff, B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim. Biophys. Acta 1666, 275–288 (2004).

    Article  CAS  Google Scholar 

  41. Miao, Y.M. et al. M2 proton channel structural validation from full-length protein samples in synthetic bilayers and E. coli membranes. Angew. Chem. Int. Ed. Engl. 51, 8383–8386 (2012).

    Article  CAS  Google Scholar 

  42. Cady, S., Wang, T. & Hong, M. Membrane-dependent effects of a cytoplasmic helix on the structure and drug binding of the influenza virus M2 protein. J. Am. Chem. Soc. 133, 11572–11579 (2011).

    Article  CAS  Google Scholar 

  43. Bhate, M.P., Wylie, B.J., Tian, L. & McDermott, A.E. Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration. J. Mol. Biol. 401, 155–166 (2010).

    Article  CAS  Google Scholar 

  44. Peterson, E. et al. Functional reconstitution of influenza A M2(22-62). Biochim. Biophys. Acta 1808, 516–521 (2011).

    Article  CAS  Google Scholar 

  45. Nagy, J.K. & Sanders, C.R. Destabilizing mutations promote membrane protein misfolding. Biochemistry 43, 19–25 (2004).

    Article  CAS  Google Scholar 

  46. Wallace, B.A., Lees, J.G., Orry, A.J., Lobley, A. & Janes, R.W. Analyses of circular dichroism spectra of membrane proteins. Protein Sci. 12, 875–884 (2003).

    Article  CAS  Google Scholar 

  47. Andreas, L.B., Eddy, M.T., Pielak, R.M., Chou, J. & Griffin, R.G. Magic angle spinning NMR investigation of influenza A M2(18-60): support for an allosteric mechanism of inhibition. J. Am. Chem Soc. 132, 10958–10960 (2010).

    Article  CAS  Google Scholar 

  48. Ketchem, R.R., Hu, W. & Cross, T.A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261, 1457–1460 (1993).

    Article  CAS  Google Scholar 

  49. De Angelis, A.A. & Opella, S.J. Bicelle samples for solid-state NMR of membrane proteins. Nat. Protoc. 2, 2332–2338 (2007).

    Article  CAS  Google Scholar 

  50. Cevc, G. & Marsh, D. Phospholipid Bilayers: Physical Principles and Models Vol. 5 (John Wiley & Sons, 1987).

  51. Baldus, M. Solid-state nuclear magnetic resonance. In Comprehensive Biophysics Vol. 1 (ed. Engleman, E.) 160–181 (Academic Press, 2012).

  52. Lakatos, A., Mors, K. & Glaubitz, C. How to investigate interactions between membrane proteins and ligands by solid-state NMR. Methods Mol. Biol. 914, 65–86 (2012).

    CAS  PubMed  Google Scholar 

  53. Wu, C.H., Ramamoorthy, A. & Opella, S.J. High resolution heteronuclear dipolar solid-state NMR spectroscopy. J. Magn. Reson. A 109, 270–272 (1994).

    Article  Google Scholar 

  54. Wang, J. et al. Imaging membrane protein helical wheels. J. Magn. Reson. 144, 162–167 (2000).

    Article  CAS  Google Scholar 

  55. Marassi, F.M. & Opella, S.J.A solid-state NMR index of helical membrane protein structure and topology. J. Magn. Reson. 144, 150–155 (2000).

    Article  CAS  Google Scholar 

  56. Murray, D.T., Lu, Y.T., Cross, T.A. & Quine, J.R. Geometry of kinked protein helices from NMR data. J. Magn. Reson. 210, 82–89 (2011).

    Article  CAS  Google Scholar 

  57. Opella, S.J. et al. Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat. Struct. Biol. 6, 374–379 (1999).

    Article  CAS  Google Scholar 

  58. Park, S.H., De Angelis, A.A., Nevzorov, A.A., Wu, C.H. & Opella, S.J. Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles. Biophys. J. 91, 3032–3042 (2006).

    Article  CAS  Google Scholar 

  59. Verardi, R., Shi, L., Traaseth, N.J., Walsh, N. & Veglia, G. Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proc. Natl. Acad. Sci. USA 108, 9101–9106 (2011).

    Article  CAS  Google Scholar 

  60. Zech, S.G., Wand, A.J. & McDermott, A.E. Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. J. Am. Chem. Soc. 127, 8618–8626 (2005).

    Article  CAS  Google Scholar 

  61. McDermott, A. Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu. Rev. Biophys. 38, 385–403 (2009).

    Article  CAS  Google Scholar 

  62. Castellani, F. et al. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420, 98–102 (2002).

    Article  CAS  Google Scholar 

  63. Park, S.H. et al. Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491, 779–783 (2012).

    Article  CAS  Google Scholar 

  64. Das, B.B. et al. Structure determination of a membrane protein in proteoliposomes. J. Am. Chem. Soc. 134, 2047–2056 (2012).

    Article  CAS  Google Scholar 

  65. Park, S.H., Das, B.B., De Angelis, A.A., Scrima, M. & Opella, S.J. Mechanically, magnetically, and 'rotationally aligned' membrane proteins in phospholipid bilayers give equivalent angular constraints for NMR structure determination. J. Phys. Chem. B 114, 13995–14003 (2010).

    Article  CAS  Google Scholar 

  66. Opella, S.J. Structure determination of membrane proteins in their native phospholipid bilayer environment by rotationally aligned solid-state NMR spectroscopy. Accounts Chem. Res. 46, 2145–2153 (2013).

    Article  CAS  Google Scholar 

  67. Cady, S.D. et al. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463, 689–692 (2010).

    Article  CAS  Google Scholar 

  68. Massotte, D. G protein-coupled receptor overexpression with the baculovirus-insect cell system: a tool for structural and functional studies. Biochim. Biophys. Acta 1610, 77–89 (2003).

    Article  CAS  Google Scholar 

  69. McCusker, E.C., Bane, S.E., O'Malley, M.A. & Robinson, A.S. Heterologous GPCR expression: a bottleneck to obtaining crystal structures. Biotechnol. Prog. 23, 540–547 (2007).

    Article  CAS  Google Scholar 

  70. Shi, L. & Ladizhansky, V. Magic-angle spinning solid-state NMR experiments for structural characterization of proteins. Methods Mol. Biol. 895, 153–165 (2012).

    Article  CAS  Google Scholar 

  71. Gor'kov, P.L. et al. Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz. J. Magn. Reson. 185, 77–93 (2007).

    Article  CAS  Google Scholar 

  72. Quine, J.R. et al. Intensity and mosaic spread analysis from PISEMA tensors in solid-state NMR. J. Magn. Reson. 179, 190–198 (2006).

    Article  CAS  Google Scholar 

  73. Page, R.C. et al. Comprehensive evaluation of solution nuclear magnetic resonance spectroscopy sample preparation for helical integral membrane proteins. J. Struct. Funct. Genomics 7, 51–64 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.W. Davidson at NHMFL and C. Escobar at FSU, IMB, NHMFL for helping with photography. We also thank P.L. Gor'kov for his design of the OS sample holder and the sample transfer base. This work was supported in part by the US National Institutes of Health (grants AI 074805, AI 073891 and AI 023007) and the US National Science Foundation (through Cooperative Agreement 0654118 between the Division of Materials Research and the State of Florida).

Author information

Authors and Affiliations

Authors

Contributions

N.D. and D.T.M. performed all the experiments such as membrane protein expression, purification, solid-state NMR sample preparation and new method development. N.D. prepared all the figures. N.D. and T.A.C. wrote the manuscript, D.T.M. provided essential comments. All three authors coordinated to complete this manuscript.

Corresponding author

Correspondence to Timothy A Cross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 12% (wt/vol) SDS-PAGE of CrgA and Rv1861 membrane protein expression and purification steps.

M: Molecular weight marker, L: Whole cell lysate containing inclusion body and membrane fractions, FT: Flow through from nickel column, Washes: two to three consecutive washing steps, Elutions: Protein elution from nickel column. Molecular weights of the proteins are shown by red color arrows.

Supplementary information

Supplementary Figure 1

12% (wt/vol) SDS-PAGE of CrgA and Rv1861 membrane protein expression and purification steps. (PDF 3068 kb)

Supplementary Methods

CrgA and Rv1861 membrane protein expression and purification; Reconstitution and OS sample preparation of 15N uniform labeled gramicidin A protein in DMPC lipid bilayers. (PDF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, N., Murray, D. & Cross, T. Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples. Nat Protoc 8, 2256–2270 (2013). https://doi.org/10.1038/nprot.2013.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.129

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing