Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A ‘Build and Retrieve’ methodology to simultaneously solve cryo-EM structures of membrane proteins

Abstract

Single-particle cryo-electron microscopy (cryo-EM) has become a powerful technique in the field of structural biology. However, the inability to reliably produce pure, homogeneous membrane protein samples hampers the progress of their structural determination. Here, we develop a bottom-up iterative method, Build and Retrieve (BaR), that enables the identification and determination of cryo-EM structures of a variety of inner and outer membrane proteins, including membrane protein complexes of different sizes and dimensions, from a heterogeneous, impure protein sample. We also use the BaR methodology to elucidate structural information from Escherichia coli K12 crude membrane and raw lysate. The findings demonstrate that it is possible to solve high-resolution structures of a number of relatively small (<100 kDa) and less abundant (<10%) unidentified membrane proteins within a single, heterogeneous sample. Importantly, these results highlight the potential of cryo-EM for systems structural proteomics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BaR methodology for the identification of proteins.
Fig. 2: Cryo-EM structures of proteins from the heterogeneous BpHpnN membrane protein sample.
Fig. 3: Cryo-EM structures of proteins enriched directly from E.coli crude cell membrane.
Fig. 4: Cryo-EM structures of proteins enriched directly from E.coli raw cell lysate.

Similar content being viewed by others

Data availability

Atomic coordinates and structure factors have been deposited with accession codes 6WTI (PDB) and EMD-21897 (EMDB) for cytochrome bo3; 6WU0 (PDB) and EMD-21901 (EMDB) for BpHpnN; 6WTZ (PDB) and EMD-21900 (EMDB) for OmpF; 6WU6 (PDB) and EMD-21906 (EMDB) for SQR (3.60 Å); 7JZ3 (PDB) and EMD-22529 (EMDB) for OmpC; 7JZ2 (PDB) and EMD-22528 (EMDB) for SQR (2.50 Å); 7JZ6 (PDB) and EMD-22530 (EMDB) for KatG; and 7JZH (PDB) and EMD-22531 (EMDB) for GadB. Source data are provided with this paper.

References

  1. Vinothkumar, K. R. & Henderson, R. Single particle electron cryomicroscopy: trends, issues and future perspective. Q. Rev. Biophys. 49, 1–25 (2016).

    Article  Google Scholar 

  2. Herzik, M. A.Jr, Wu, M. & Lander, G. C. High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM. Nat. Commun. 10, 1032 (2019).

    Article  Google Scholar 

  3. Ho, C. M. et al. Malaria parasite translocon structure and mechanism of effector export. Nature 561, 70–75 (2018).

    Article  CAS  Google Scholar 

  4. Morgan, C. E. et al. Cryo-electron microscopy structure of the Acinetobacter baumannii 70S ribosome and implications for new antibiotic development. mBio 11, e03117–e03119 (2020).

    Article  CAS  Google Scholar 

  5. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  6. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  7. Daligault, H. E. et al. Whole-genome assemblies of 56 Burkholderia species. Genome Announc. 2, e01106–e01114 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Doughty, D. M. et al. The RND-family transporter, HpnN, is required for hopanoid localization to the outer membrane of Rhodopseudomonas palustris TIE-1. Proc. Natl Acad. Sci. U S A 108, E1045–E1051 (2011).

    Article  CAS  Google Scholar 

  9. Sousa, F. L. et al. The superfamily of heme-copper oxygen reductases: types and evolutionary considerations. Biochim. Biophys. Acta 1817, 629–637 (2012).

    Article  CAS  Google Scholar 

  10. Abramson, J. et al. The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat. Struct. Biol. 7, 910–917 (2000).

    Article  CAS  Google Scholar 

  11. Yap, L. L. et al. The quinone-binding sites of the cytochrome bo3 ubiquinol oxidase from Escherichia coli. Biochim. Biophys. Acta 1797, 1924–1932 (2010).

    Article  CAS  Google Scholar 

  12. Choi, S. K. et al. Location of the substrate binding site of the cytochrome bo3 ubiquinol oxidase from Escherichia coli. J. Am. Chem. Soc. 139, 8346–8354 (2017).

    Article  CAS  Google Scholar 

  13. Kumar, N. et al. Crystal structures of the Burkholderia multivorans hopanoid transporter HpnN. Proc. Natl Acad. Sci. U S A 114, 6557–6562 (2017).

    Article  CAS  Google Scholar 

  14. Centers for Disease Control and Prevention. Bioterrorism agents/diseases (U.S. Department of Health and Human Services, 2018); https://emergency.cdc.gov/agent/agentlist-category.asp

  15. Wagar, E. Bioterrorism and the role of the clinical microbiology laboratory. Clin. Microbiol. Rev. 29, 175–189 (2016).

    Article  Google Scholar 

  16. Christopher, G. W., Cieslak, T. J., Pavlin, J. A. & Eitzen, E. M.Jr Biological warfare. A historical perspective. JAMA 278, 412–417 (1997).

    Article  CAS  Google Scholar 

  17. Nierman, W. C. et al. Structural flexibility in the Burkholderia mallei genome. Proc. Natl Acad. Sci. U S A 101, 14246–14251 (2004).

    Article  CAS  Google Scholar 

  18. Schweizer, H. P. Mechanisms of antibiotic resistance in Burkholderia pseudomallei: implications for treatment of melioidosis. Future Microbiol. 7, 1389–1399 (2012).

    Article  CAS  Google Scholar 

  19. Malott, R. J., Steen-Kinnaird, B. R., Lee, T. D. & Speert, D. P. Identification of hopanoid biosynthesis genes involved in polymyxin resistance in Burkholderia multivorans. Antimicrob. Agents Chemother. 56, 464–471 (2012).

    Article  CAS  Google Scholar 

  20. Malott, R. J. et al. Fosmidomycin decreases membrane hopanoids and potentiates the effects of colistin on Burkholderia multivorans clinical isolates. Antimicrob. Agents Chemother. 58, 5211–5219 (2014).

    Article  Google Scholar 

  21. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    Article  CAS  Google Scholar 

  22. Cowan, S. W. et al. Crystal structures explain functional properties of two E. coli porins. Nature 358, 727–733 (1992).

    Article  CAS  Google Scholar 

  23. Yankovskaya, V. et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299, 700–704 (2003).

    Article  CAS  Google Scholar 

  24. Baslé, A., Rummel, G., Storici, P., Rosenbusch, J. P. & Schirmer, T. Crystal structure of osmoporin OmpC from E. coli at 2.0 Å. J. Mol. Biol. 362, 933–942 (2006).

    Article  Google Scholar 

  25. Carpena, X., Melik-Adamyan, W., Loewen, P. C. & Fita, I. Structure of the C-terminal domain of the catalase–peroxidase KatG from Escherichia coli. Acta Crystallogr. D Biol. Crystallogr. 60, 1824–1832 (2004).

    Article  Google Scholar 

  26. Capitani, G. et al. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J. 22, 4027–4037 (2003).

    Article  CAS  Google Scholar 

  27. Chorev, D. S. et al. Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science 362, 829–834 (2018).

    Article  CAS  Google Scholar 

  28. Ho, C. M. et al. Bottom-up structural proteomics: cryoEM of protein complexes enriched from the cellular milieu. Nat. Methods 17, 79–85 (2020).

    Article  CAS  Google Scholar 

  29. Kastritis, P. L. et al. Capturing protein communities by structural proteomics in a thermophilic eukaryote. Mol. Syst. Biol. 13, 936 (2017).

    Article  Google Scholar 

  30. Yi, X., Verbeke, E. J., Chang, Y., Dickinson, D. J. & Taylor, D. W. Electron microscopy snapshots of single particles from single cells. J. Biol. Chem. 294, 1602–1608 (2019).

    Article  CAS  Google Scholar 

  31. Schmidli, C. et al. Microfluidic protein isolation and sample preparation for high-resolution cryo-EM. Proc. Natl Acad. Sci. U S A 116, 15007–15012 (2019).

    Article  CAS  Google Scholar 

  32. Long, F. et al. Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Nature 467, 484–488 (2010).

    Article  CAS  Google Scholar 

  33. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  Google Scholar 

  34. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  Google Scholar 

  35. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  Google Scholar 

  36. Terwilliger, T. C., Ludtke, S. J., Read, R. J., Adams, P. D. & Afonine, P. V. Improvement of cryo-EM maps by density modification. Nat. Methods 17, 923–927 (2020).

    Article  CAS  Google Scholar 

  37. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  Google Scholar 

  38. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  39. Marty, M. T. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015).

    Article  CAS  Google Scholar 

  40. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. A. Klenotic for proofreading the manuscript. We are grateful to the Cryo-Electron Microscopy Core at the CWRU School of Medicine and K. Li for access to the sample preparation and Cryo-EM instrumentation. We thank D. Wu and T. El-Baba for help with proteomics analysis. This work was supported by NIH grant R01AI145069 (E.W.Y.) and MRC grant MR/N020413/1 (C.V.R.). This research was supported in part by the National Cryo-EM Facility of the National Cancer Institute at the Frederick National Laboratory for Cancer Research under contract HSSN261200800001E.

Author information

Authors and Affiliations

Authors

Contributions

C.-C.S., M.L., C.E.M. and E.W.Y. designed the cryo-EM experiments. J.R.B. and C.V.R. designed the nMS and proteomics experiments. C.-C.S., M.L. and C.E.M. made the BpHpnN, crude cell membrane and raw cell lysate samples and performed the cryo-EM experiments. J.R.B. performed the nMS and proteomics experiments. E.W.Y. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Edward W. Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Arunima Singh was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Flowchart of the ‘Build and Retrieve’ (BaR) iterative method.

Extended Data Fig. 2 Native mass spectrometry (nMS) and proteomics analysis suggest that the sample of B. pseudomallei HpnN was co-purified with several other proteins.

(a) SDS–PAGE of the purified sample where the gel bands were sliced and subjected to tryptic digestion to identify the proteins. Proteomics analysis clearly indicated the presence of HpnN, OmpF and different components of succinate dehydrogenase (SdhA and SdhB) and cytochrome bo3 oxidase (Subunit I, Subunit II and Subunit III). The protein bands were quantified and replicated three times using ImageJ (imagej.net), showing the abundance of 60.8% for BpHpnN, 9.4% for SdhA + GlmS, 9.7% for subunit I, 6.4% for ArnC + subunit II+PfkA + GatD + TDH+ OmpF, 6.7% for SdhB and 1.9% for subunit III. (b) Native mass spectra show several charge state distributions whose deconvoluted masses are shown in the Table. Among them, the 93,548 Da can be readily assigned to monomeric HpnN and the 133,853 Da to dimeric glucosamine-6-phosphate synthase (GlmS). While the masses 65,233 Da and 75,031 Da can be assigned to SdhA bound to FAD and Subunit I bound to heme b respectively based on the data from (a). Among the proteins identified in (a), PfkA and TDH are known to exist as tetramers. Therefore, the masses 139,385 Da and 149,545 Da can be assigned to the PfkA and TDH tetramers. The collisionally induced dissociated products shown in (c) further supported this assignment.

Extended Data Fig. 3 2D classes of the cryo-EM images.

The 2D classification indicates that there are at least five different proteins coexist in the nanodisc sample.

Extended Data Fig. 4 Cryo-EM analysis of the E. coli cytochrome bo3 complex.

(a) BaR processing flowchart. (b) Representative 2D classes. (c) Fourier Shell Correlation (FSC) curves. (d) Sharpened cryo-EM map of the cytochrome bo3 complex viewed in the membrane plane. (e) Sharpened cryo-EM map of the cytochrome bo3 complex viewed from the cytoplasmic side. (f) Local EM density map of cytochrome bo3.

Extended Data Fig. 5 Cryo-EM analysis of the B. pseudomallei HpnN transporter.

(a) BaR processing flowchart. (b) Representative 2D classes. (c) Fourier Shell Correlation (FSC) curves. (d and e) Sharpened cryo-EM maps of the BpHpnN transporter viewed in the membrane plane. (f) Local EM density map of BpHpnN.

Extended Data Fig. 6 Cryo-EM analysis of the E. coli OmpF porin channel.

(a) BaR processing flowchart. (b) Representative 2D classes. (c) Fourier Shell Correlation (FSC) curves. (d) Sharpened cryo-EM map of the OmpF porin viewed in the membrane plane and from the periplasmic side. (e) Sharpened cryo-EM map of the OmpF viewed from the exterior side. (f) Local EM density map of OmpF.

Extended Data Fig. 7 Cryo-EM analysis of the E. coli SQR complex.

(a) BaR processing flowchart. (b) Representative 2D classes. (c) Fourier Shell Correlation (FSC) curves. (d) Sharpened cryo-EM map of the SQR complex viewed in the membrane plane. (e) Sharpened cryo-EM map of the SQR complex viewed from the cytoplasmic side. (f) Local EM density map of SQR.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Supplementary Tables 1–5.

Reporting Summary

Source data

Source Data Extended Data Fig. 2

Full scan image for Extended Data Figure 2a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, CC., Lyu, M., Morgan, C.E. et al. A ‘Build and Retrieve’ methodology to simultaneously solve cryo-EM structures of membrane proteins. Nat Methods 18, 69–75 (2021). https://doi.org/10.1038/s41592-020-01021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-020-01021-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing