The touchscreen operant platform for testing learning and memory in rats and mice


An increasingly popular method of assessing cognitive functions in rodents is the automated touchscreen platform, on which a number of different cognitive tests can be run in a manner very similar to touchscreen methods currently used to test human subjects. This methodology is low stress (using appetitive rather than aversive reinforcement), has high translational potential and lends itself to a high degree of standardization and throughput. Applications include the study of cognition in rodent models of psychiatric and neurodegenerative diseases (e.g., Alzheimer's disease, schizophrenia, Huntington's disease, frontotemporal dementia), as well as the characterization of the role of select brain regions, neurotransmitter systems and genes in rodents. This protocol describes how to perform four touchscreen assays of learning and memory: visual discrimination, object-location paired-associates learning, visuomotor conditional learning and autoshaping. It is accompanied by two further protocols (also published in this issue) that use the touchscreen platform to assess executive function, working memory and pattern separation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Flowchart overview of pretraining stages 2–5.
Figure 2: Flowchart overview of the visual discrimination task.
Figure 3: Stimulus pairs recommended for use in visual discrimination and reversal learning.
Figure 4: Flowchart overview of object-location paired-associates learning task.
Figure 5: The six possible trial types in the object-location paired-associates learning task.
Figure 6: Flowchart overview of the VMCL task.
Figure 7: VMCL discriminative stimuli.
Figure 8: Flowchart overview of the autoshaping task.
Figure 9: Illustrations of Campden Instruments touchscreen chamber apparatus.
Figure 10: Annotated photographs of a Campden Instruments rat touchscreen chamber.
Figure 11: Visual discrimination acquisition.
Figure 12: Data from the autoshaping task.


  1. 1

    Bussey, T.J. et al. New translational assays for preclinical modelling of cognition in schizophrenia: The touchscreen testing method for mice and rats. Neuropharmacology 62, 1191–1203 (2012).

  2. 2

    Bussey, T.J., Muir, J.L. & Robbins, T.W. A novel automated touchscreen procedure for assessing learning in the rat using computer graphic stimuli. Neurosci. Res. Commun. 15, 103–110 (1994).

  3. 3

    Bussey, T.J. et al. The touchscreen cognitive testing method for rodents: how to get the best out of your rat. Learn. Mem. 15, 516–523 (2008).

  4. 4

    Oomen, C.A. et al. The touchscreen operant platform for testing working memory and pattern separation in rats and mice. Nat. Protoc. 8, 2006–2021 (2013).

  5. 5

    Mar, A.C. et al. The touchscreen operant platform for testing executive function in rats and mice. Nat. Protoc. 8, 1985–2005 (2013).

  6. 6

    Romberg, C., Horner, A.E., Bussey, T.J. & Saksida, L.M. A touch screen-automated cognitive test battery reveals impaired attention, memory abnormalities, and increased response inhibition in the TgCRND8 mouse model of Alzheimer's disease. Neurobiol. Aging 34, 731–744 (2013).

  7. 7

    Romberg, C., Mattson, M.P., Mughal, M.R., Bussey, T.J. & Saksida, L.M. Impaired attention in the 3xTgAD mouse model of Alzheimer's disease: rescue by donepezil (Aricept). J. Neurosci. 31, 3500–3507 (2011).

  8. 8

    Nithianantharajah, J. et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat. Neurosci. 16, 16–24 (2013).

  9. 9

    Brigman, J.L., Ihne, J., Saksida, L.M., Bussey, T.J. & Holmes, A. Effects of subchronic phencyclidine (PCP) treatment on social behaviors, and operant discrimination and reversal learning in C57BL/6J mice. Front. Behav. Neurosci. 3, 2 (2009).

  10. 10

    Brigman, J.L., Padukiewicz, K.E., Sutherland, M.L. & Rothblat, L.A. Executive functions in the heterozygous reeler mouse model of schizophrenia. Behav. Neurosci. 120, 984–988 (2006).

  11. 11

    Morton, A.J., Skillings, E., Bussey, T.J. & Saksida, L.M. Measuring cognitive deficits in disabled mice using an automated interactive touchscreen system. Nat. Methods 3, 767 (2006).

  12. 12

    Creer, D.J., Romberg, C., Saksida, L.M., van Praag, H. & Bussey, T.J. Running enhances spatial pattern separation in mice. Proc. Natl. Acad. Sci. USA 107, 2367–2372 (2010).

  13. 13

    Graybeal, C. et al. Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF. Nat. Neurosci. 14, 1507–1509 (2011).

  14. 14

    Izquierdo, A. et al. Reversal-specific learning impairments after a binge regimen of methamphetamine in rats: possible involvement of striatal dopamine. Neuropsychopharmacology 35, 505–514 (2010).

  15. 15

    Aggleton, J.P., Keen, S., Warburton, E.C. & Bussey, T.J. Extensive cytotoxic lesions involving both the rhinal cortices and area TE impair recognition but spare spatial alternation in the rat. Brain Res. Bull. 43, 279–287 (1997).

  16. 16

    Bussey, T.J., Dias, R., Amin, E., Muir, J.L. & Aggleton, J.P. Perirhinal cortex and place-object conditional learning in the rat. Behav. Neurosci. 115, 776–785 (2001).

  17. 17

    Bussey, T.J. et al. Intact negative patterning in rats with fornix or combined perirhinal and postrhinal cortex lesions. Exp. Brain Res. 134, 506–519 (2000).

  18. 18

    Winters, B.D., Bartko, S.J., Saksida, L.M. & Bussey, T.J. Muscimol, AP5, or scopolamine infused into perirhinal cortex impairs two-choice visual discrimination learning in rats. Neurobiol. Learn. Mem. 93, 221–228 (2010).

  19. 19

    Brigman, J.L. & Rothblat, L.A. Stimulus specific deficit on visual reversal learning after lesions of medial prefrontal cortex in the mouse. Behav. Brain Res. 187, 405–410 (2008).

  20. 20

    Christakou, A., Robbins, T.W. & Everitt, B.J. Functional disconnection of a prefrontal cortical-dorsal striatal system disrupts choice reaction time performance: implications for attentional function. Behav. Neurosci. 115, 812–825 (2001).

  21. 21

    Christakou, A., Robbins, T.W. & Everitt, B.J. Prolonged neglect following unilateral disruption of a prefrontal cortical-dorsal striatal system. Eur. J. Neurosci. 21, 782–792 (2005).

  22. 22

    Bussey, T.J., Everitt, B.J. & Robbins, T.W. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion. Behav. Neurosci. 111, 908–919 (1997).

  23. 23

    Bussey, T.J., Muir, J.L., Everitt, B.J. & Robbins, T.W. Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behav. Neurosci. 111, 920–936 (1997).

  24. 24

    Cardinal, R.N. et al. Role of the anterior cingulate cortex in the control over behavior by Pavlovian conditioned stimuli in rats. Behav. Neurosci. 117, 566–587 (2003).

  25. 25

    Cardinal, R.N. et al. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav. Neurosci. 116, 553–567 (2002).

  26. 26

    Parkinson, J.A., Willoughby, P.J., Robbins, T.W. & Everitt, B.J. Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems. Behav. Neurosci. 114, 42–63 (2000).

  27. 27

    Abela, A.R. & Chudasama, Y. Dissociable contributions of the ventral hippocampus and orbitofrontal cortex to decision-making with a delayed or uncertain outcome. Eur. J. Neurosci 37, 640–647 (2013).

  28. 28

    Chudasama, Y. & Robbins, T.W. Dissociable contributions of the orbitofrontal and infralimbic cortex to Pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J. Neurosci. 23, 8771–8780 (2003).

  29. 29

    Chudasama, Y. & Muir, J.L. Visual attention in the rat: a role for the prelimbic cortex and thalamic nuclei? Behav. Neurosci. 115, 417–428 (2001).

  30. 30

    Dalley, J.W. et al. Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 102, 6189–6194 (2005).

  31. 31

    Dalley, J.W. et al. Nucleus accumbens dopamine and discriminated approach learning: interactive effects of 6-hydroxydopamine lesions and systemic apomorphine administration. Psychopharmacology (Berl.) 161, 425–433 (2002).

  32. 32

    Parkinson, J.A., Robbins, T.W. & Everitt, B.J. Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. Eur. J. Neurosci. 12, 405–413 (2000).

  33. 33

    Winstanley, C.A., Baunez, C., Theobald, D.E. & Robbins, T.W. Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: the importance of the basal ganglia in Pavlovian conditioning and impulse control. Eur. J. Neurosci. 21, 3107–3116 (2005).

  34. 34

    Bussey, T.J., Clea Warburton, E., Aggleton, J.P. & Muir, J.L. Fornix lesions can facilitate acquisition of the transverse patterning task: a challenge for 'configural' theories of hippocampal function. J. Neurosci. 18, 1622–1631 (1998).

  35. 35

    Abela, A.R., Dougherty, S.D., Fagen, E.D., Hill, C.J. & Chudasama, Y. Inhibitory control deficits in rats with ventral hippocampal lesions. Cereb. Cortex 23, 1396–1409 (2013).

  36. 36

    Ito, R., Everitt, B.J. & Robbins, T.W. The hippocampus and appetitive Pavlovian conditioning: effects of excitotoxic hippocampal lesions on conditioned locomotor activity and autoshaping. Hippocampus 15, 713–721 (2005).

  37. 37

    Kim, S., Lee, J. & Lee, I. The hippocampus is required for visually cued contextual response selection, but not for visual discrimination of contexts. Front. Behav. Neurosci. 6, 66 (2012).

  38. 38

    McTighe, S.M., Mar, A.C., Romberg, C., Bussey, T.J. & Saksida, L.M. A new touchscreen test of pattern separation: effect of hippocampal lesions. Neuroreport 20, 881–885 (2009).

  39. 39

    Talpos, J.C., Dias, R., Bussey, T.J. & Saksida, L.M. Hippocampal lesions in rats impair learning and memory for locations on a touch-sensitive computer screen: the 'ASAT' task. Behav. Brain Res. 192, 216–225 (2008).

  40. 40

    Talpos, J.C., McTighe, S.M., Dias, R., Saksida, L.M. & Bussey, T.J. Trial-unique, delayed nonmatching-to-location (TUNL): a novel, highly hippocampus-dependent automated touchscreen test of location memory and pattern separation. Neurobiol. Learn. Mem. 94, 341–352 (2010).

  41. 41

    Talpos, J.C., Winters, B.D., Dias, R., Saksida, L.M. & Bussey, T.J. A novel touchscreen-automated paired-associate learning (PAL) task sensitive to pharmacological manipulation of the hippocampus: a translational rodent model of cognitive impairments in neurodegenerative disease. Psychopharmacology (Berl) 205, 157–168 (2009).

  42. 42

    Inglis, W.L., Olmstead, M.C. & Robbins, T.W. Pedunculopontine tegmental nucleus lesions impair stimulus--reward learning in autoshaping and conditioned reinforcement paradigms. Behav. Neurosci. 114, 285–294 (2000).

  43. 43

    Janisiewicz, A.M. & Baxter, M.G. Transfer effects and conditional learning in rats with selective lesions of medial septal/diagonal band cholinergic neurons. Behav. Neurosci. 117, 1342–1352 (2003).

  44. 44

    Botly, L.C. & De Rosa, E. Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention. Cereb. Cortex 22, 2441–2453 (2012).

  45. 45

    Bartko, S.J., Vendrell, I., Saksida, L.M. & Bussey, T.J. A computer-automated touchscreen paired-associates learning (PAL) task for mice: impairments following administration of scopolamine or dicyclomine and improvements following donepezil. Psychopharmacology (Berl) 214, 537–548 (2011).

  46. 46

    Chen, W.S., Wong, F.K., Chapman, P.F. & Pemberton, D.J. Effect of donepezil on reversal learning in a touch screen-based operant task. Behav. Pharmacol. 20, 653–656 (2009).

  47. 47

    McCarthy, A.D. et al. FK962 and donepezil act synergistically to improve cognition in rats: potential as an add-on therapy for Alzheimer's disease. Pharmacol. Biochem. Behav. 98, 76–80 (2011).

  48. 48

    Talpos, J.C., Fletcher, A.C., Circelli, C., Tricklebank, M.D. & Dix, S.L. The pharmacological sensitivity of a touchscreen-based visual discrimination task in the rat using simple and perceptually challenging stimuli. Psychopharmacology (Berl.) 221, 437–449 (2012).

  49. 49

    Izquierdo, A. et al. Genetic and dopaminergic modulation of reversal learning in a touchscreen-based operant procedure for mice. Behav. Brain Res. 171, 181–188 (2006).

  50. 50

    Steckler, T. & Sahgal, A. Psychopharmacological studies in rats responding at touch-sensitive devices. Psychopharmacology (Berl.) 118, 226–229 (1995).

  51. 51

    Brigman, J.L. et al. Pharmacological or genetic inactivation of the serotonin transporter improves reversal learning in mice. Cereb. Cortex 20, 1955–1963 (2010).

  52. 52

    Izquierdo, A. et al. Impaired reward learning and intact motivation after serotonin depletion in rats. Behav. Brain Res. 233, 494–499 (2012).

  53. 53

    Winstanley, C.A., Dalley, J.W., Theobald, D.E. & Robbins, T.W. Fractionating impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behavior. Neuropsychopharmacology 29, 1331–1343 (2004).

  54. 54

    Coba, M.P. et al. TNiK is required for postsynaptic and nuclear signaling pathways and cognitive function. J. Neurosci. 32, 13987–13999 (2012).

  55. 55

    Karlsson, R.M. et al. Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology 34, 1578–1589 (2009).

  56. 56

    Bartko, S.J. et al. Intact attentional processing but abnormal responding in M1 muscarinic receptor-deficient mice using an automated touchscreen method. Neuropharmacology 61, 1366–1378 (2011).

  57. 57

    Brigman, J.L. et al. Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit. Learn. Mem. 15, 50–54 (2008).

  58. 58

    Barkus, C. et al. Do GluA1 knockout mice exhibit behavioral abnormalities relevant to the negative or cognitive symptoms of schizophrenia and schizoaffective disorder? Neuropharmacology 62, 1263–1272 (2012).

  59. 59

    Ryan, T.J. et al. Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior. Nat. Neurosci. 16, 25–32 (2013).

  60. 60

    Clelland, C.D. et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210–213 (2009).

  61. 61

    Minini, L. & Jeffery, K.J. Do rats use shape to solve 'shape discriminations'? Learn. Mem. 13, 287–297 (2006).

  62. 62

    Brigman, J.L. et al. GluN2B in corticostriatal circuits governs choice learning and choice shifting. Nat. Neurosci. 16, 1101–1110 (2013).

  63. 63

    Bussey, T.J., Saksida, L.M. & Rothblat, L.A. Discrimination of computer-graphic stimuli by mice: a method for the behavioral characterization of transgenic and gene-knockout models. Behav. Neurosci. 115, 957–960 (2001).

  64. 64

    Morrison, S.K. & Brown, M.F. The touch screen system in the pigeon laboratory: an initial evaluation of its utility. Behav. Res. Methods Instrum. Comput. 22, 123–126 (1990).

  65. 65

    Leising, K.J., Wolf, J.E. & Ruprecht, C.M. Visual discrimination learning with an iPad-equipped apparatus. Behav. Process. 93, 140–147 (2013).

  66. 66

    Roberts, A.C., Robbins, T.W. & Everitt, B.J. The effects of intradimensional and extradimensional shifts on visual discrimination learning in humans and non-human primates. Q. J. Exp. Psychol. B 40, 321–341 (1988).

  67. 67

    Gaffan, D. et al. Effects of fornix transection upon associative memory in monkeys: role of the hippocampus in learned action. Q. J. Exp. Psychol. B 36, 173–221 (1984).

  68. 68

    Sahgal, A. & Steckler, T. TouchWindows and operant behaviour in rats. J. Neurosci. Methods 55, 59–64 (1994).

  69. 69

    Jones, B. & Mishkin, M. Limbic lesions and the problem of stimulus—reinforcement associations. Exp. Neurol. 36, 362–377 (1972).

  70. 70

    Brigman, J.L., Bussey, T.J., Saksida, L.M. & Rothblat, L.A. Discrimination of multidimensional visual stimuli by mice: intra- and extradimensional shifts. Behav. Neurosci. 119, 839–842 (2005).

  71. 71

    Markham, M.R., Butt, A.E. & Dougher, M.J. A computer touch-screen apparatus for training visual discriminations in rats. J. Exp. Anal. Behav. 65, 173–182 (1996).

  72. 72

    Bussey, T.J., Muir, J.L., Everitt, B.J. & Robbins, T.W. Dissociable effects of anterior and posterior cingulate cortex lesions on the acquisition of a conditional visual discrimination: facilitation of early learning vs. impairment of late learning. Behav. Brain Res. 82, 45–56 (1996).

  73. 73

    Muir, J.L., Bussey, T.J., Everitt, B.J. & Robbins, T.W. Dissociable effects of AMPA-induced lesions of the vertical limb diagonal band of Broca on performance of the 5-choice serial reaction time task and on acquisition of a conditional visual discrimination. Behav. Brain Res. 82, 31–44 (1996).

  74. 74

    Chudasama, Y., Bussey, T.J. & Muir, J.L. Effects of selective thalamic and prelimbic cortex lesions on two types of visual discrimination and reversal learning. Eur. J. Neurosci. 14, 1009–1020 (2001).

  75. 75

    Sahakian, B.J. et al. A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson's disease. Brain 111, 695–718 (1988).

  76. 76

    Stip, E. et al. Cognitive discernible factors between schizophrenia and schizoaffective disorder. Brain Cogn. 59, 292–295 (2005).

  77. 77

    Barnett, J.H. et al. Assessing cognitive function in clinical trials of schizophrenia. Neurosci. Biobehav. Rev. 34, 1161–1177 (2010).

  78. 78

    Barnett, J.H. et al. Visuospatial learning and executive function are independently impaired in first-episode psychosis. Psychol. Med. 35, 1031–1041 (2005).

  79. 79

    Lange, K.W., Sahakian, B.J., Quinn, N.P., Marsden, C.D. & Robbins, T.W. Comparison of executive and visuospatial memory function in Huntington's disease and dementia of Alzheimer type matched for degree of dementia. J. Neurol. Neurosurg. Psychiatry 58, 598–606 (1995).

  80. 80

    Porter, R.J., Gallagher, P., Thompson, J.M. & Young, A.H. Neurocognitive impairment in drug-free patients with major depressive disorder. Br. J. Psychiatry 182, 214–220 (2003).

  81. 81

    Sweeney, J.A., Kmiec, J.A. & Kupfer, D.J. Neuropsychologic impairments in bipolar and unipolar mood disorders on the CANTAB neurocognitive battery. Biol. Psychiatry 48, 674–684 (2000).

  82. 82

    Sahakian, B.J. et al. Sparing of attentional relative to mnemonic function in a subgroup of patients with dementia of the Alzheimer type. Neuropsychologia 28, 1197–1213 (1990).

  83. 83

    Sahgal, A. et al. Detection of visual memory and learning deficits in Alzheimer's disease using the Cambridge Neuropsychological Test Automated Battery. Dementia 2, 150–158 (1991).

  84. 84

    Fowler, K.S., Saling, M.M., Conway, E.L., Semple, J.M. & Louis, W.J. Computerized neuropsychological tests in the early detection of dementia: prospective findings. J. Int. Neuropsychol. Soc. 3, 139–146 (1997).

  85. 85

    Blackwell, A.D. et al. Detecting dementia: novel neuropsychological markers of preclinical Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 17, 42–48 (2004).

  86. 86

    Swainson, R. et al. Early detection and differential diagnosis of Alzheimer's disease and depression with neuropsychological tasks. Dement. Geriatr. Cogn. Disord. 12, 265–280 (2001).

  87. 87

    Milner, B., Johnsrude, I. & Crane, J. Right medial temporal-lobe contribution to object-location memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1469–1474 (1997).

  88. 88

    Owen, A.M., Sahakian, B.J., Semple, J., Polkey, C.E. & Robbins, T.W. Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 33, 1–24 (1995).

  89. 89

    Simons, J.S. & Spiers, H.J. Prefrontal and medial temporal lobe interactions in long-term memory. Nat. Rev. Neurosci. 4, 637–648 (2003).

  90. 90

    McAllister, K.A., Saksida, L.M. & Bussey, T.J. Dissociation between memory retention across a delay and pattern separation following medial prefrontal cortex lesions in the touchscreen TUNL task. Neurobiol. Learn. Mem. 101, 120–126 (2013).

  91. 91

    Talpos, J.C. in Proceedings of Measuring Behavior 2012, 8th International Conference on Methods and Techniques in Behavioral Research (Utrecht, The Netherlands, August 28–31, 2012) (eds. Spink, A.J. et al.)(Noldus Information Technology, 2012).

  92. 92

    Murray, E.A., Bussey, T.J. & Wise, S.P. Role of prefrontal cortex in a network for arbitrary visuomotor mapping. Exp. Brain Res. 133, 114–129 (2000).

  93. 93

    Sziklas, V., Petrides, M. & Leri, F. The effects of lesions to the mammillary region and the hippocampus on conditional associative learning by rats. Eur. J. Neurosci. 8, 106–115 (1996).

  94. 94

    Brasted, P.J., Bussey, T.J., Murray, E.A. & Wise, S.P. Role of the hippocampal system in associative learning beyond the spatial domain. Brain 126, 1202–1223 (2003).

  95. 95

    Reading, P.J., Dunnett, S.B. & Robbins, T.W. Dissociable roles of the ventral, medial and lateral striatum on the acquisition and performance of a complex visual stimulus-response habit. Behav. Brain Res. 45, 147–161 (1991).

  96. 96

    Marston, H.M., Everitt, B.J. & Robbins, T.W. Comparative effects of excitotoxic lesions of the hippocampus and septum/diagonal band on conditional visual discrimination and spatial learning. Neuropsychologia 31, 1099–1118 (1993).

  97. 97

    Bussey, T.J., Duck, J., Muir, J.L. & Aggleton, J.P. Distinct patterns of behavioural impairments resulting from fornix transection or neurotoxic lesions of the perirhinal and postrhinal cortices in the rat. Behav. Brain Res. 111, 187–202 (2000).

  98. 98

    Hay, J.F., Moscovitch, M. & Levine, B. Dissociating habit and recollection: evidence from Parkinson's disease, amnesia and focal lesion patients. Neuropsychologia 40, 1324–1334 (2002).

  99. 99

    Witt, K., Nuhsman, A. & Deuschl, G. Dissociation of habit-learning in Parkinson's and cerebellar disease. J. Cogn. Neurosci. 14, 493–499 (2002).

  100. 100

    Brown, P.L. & Jenkins, H.M. Auto-shaping of the pigeon's key-peck. J. Exp. Anal. Behav. 11, 1–8 (1968).

  101. 101

    Wilcove, W.G. & Miller, J.C. CS-USC presentations and a lever: human autoshaping. J. Exp. Psychol. 103, 868–877 (1974).

  102. 102

    Sidman, M. & Fletcher, F.G. A demonstration of auto-shaping with monkeys. J. Exp. Anal. Behav. 11, 307–309 (1968).

  103. 103

    Wasserman, E.A. Pavlovian conditioning with heat reinforcement produces stimulus-directed pecking in chicks. Science 181, 875–877 (1973).

  104. 104

    Jenkins, H.M., Barrera, F.J., Ireland, C. & Woodside, B. Signal-centered action patterns of dogs in appetitive classical conditioning. Learn. Motiv. 9, 272–296 (1978).

  105. 105

    Stiers, M. & Silberberg, A. Lever-contact responses in rats: automaintenance with and without a negative response-reinforcer dependency. J. Exp. Anal. Behav. 22, 497–506 (1974).

  106. 106

    Cleland, G.G. & Davey, G.C. Autoshaping in the rat: the effects of localizable visual and auditory signals for food. J. Exp. Anal. Behav. 40, 47–56 (1983).

  107. 107

    Di Ciano, P., Cardinal, R.N., Cowell, R.A., Little, S.J. & Everitt, B.J. Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of Pavlovian approach behavior. J. Neurosci. 21, 9471–9477 (2001).

  108. 108

    Williams, D.R. & Williams, H. Auto-maintenance in the pigeon: sustained pecking despite contingent non-reinforcement. J. Exp. Anal. Behav. 12, 511–520 (1969).

  109. 109

    Parkinson, J.A. et al. Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function. Behav. Brain Res. 137, 149–163 (2002).

  110. 110

    Brog, J.S., Salyapongse, A., Deutch, A.Y. & Zahm, D.S. The patterns of afferent innervation of the core and shell in the 'accumbens' part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J. Comp. Neurol. 338, 255–278 (1993).

  111. 111

    Danna, C.L. & Elmer, G.I. Disruption of conditioned reward association by typical and atypical antipsychotics. Pharmacol. Biochem. Behav. 96, 40–47 (2010).

  112. 112

    Coyle, J.T., Basu, A., Benneyworth, M., Balu, D. & Konopaske, G. Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications. Handb. Exp. Pharmacol. 267–295 (2012).

  113. 113

    Goto, Y. & Grace, A.A. The dopamine system and the pathophysiology of schizophrenia: a basic science perspective. Int. Rev. Neurobiol. 78, 41–68 (2007).

  114. 114

    Flagel, S.B., Watson, S.J., Robinson, T.E. & Akil, H. Individual differences in the propensity to approach signals vs. goals promote different adaptations in the dopamine system of rats. Psychopharmacology (Berl.) 191, 599–607 (2007).

  115. 115

    Flagel, S.B., Watson, S.J., Akil, H. & Robinson, T.E. Individual differences in the attribution of incentive salience to a reward-related cue: influence on cocaine sensitization. Behav. Brain Res. 186, 48–56 (2008).

  116. 116

    Muir, J.L. Attention and stimulus processing in the rat. Brain Res. Cogn. Brain Res. 3, 215–225 (1996).

  117. 117

    Clark, R.E., Reinagel, P., Broadbent, N.J., Flister, E.D. & Squire, L.R. Intact performance on feature-ambiguous discriminations in rats with lesions of the perirhinal cortex. Neuron 70, 132–140 (2011).

  118. 118

    Cook, R.G., Geller, A.I., Zhang, G.R. & Gowda, R. Touchscreen-enhanced visual learning in rats. Behav. Res. Methods Instrum. Comput. 36, 101–106 (2004).

  119. 119

    Frick, K.M. & Berger-Sweeney, J. Spatial reference memory and neocortical neurochemistry vary with the estrous cycle in C57BL/6 mice. Behav. Neurosci. 115, 229–237 (2001).

  120. 120

    Meziane, H., Ouagazzal, A.M., Aubert, L., Wietrzych, M. & Krezel, W. Estrous cycle effects on behavior of C57BL/6J and BALB/cByJ female mice: implications for phenotyping strategies. Genes Brain Behav. 6, 192–200 (2007).

  121. 121

    Lederle, L. et al. Reward-related behavioral paradigms for addiction research in the mouse: performance of common inbred strains. PLoS ONE 6, e15536 (2011).

  122. 122

    Beeler, J.A., Prendergast, B. & Zhuang, X. Low amplitude entrainment of mice and the impact of circadian phase on behavior tests. Physiol. Behav. 87, 870–880 (2006).

  123. 123

    Roedel, A., Storch, C., Holsboer, F. & Ohl, F. Effects of light or dark phase testing on behavioral and cognitive performance in DBA mice. Lab Anim. 40, 371–381 (2006).

  124. 124

    Chaudhury, D. & Colwell, C.S. Circadian modulation of learning and memory in fear-conditioned mice. Behav. Brain Res. 133, 95–108 (2002).

  125. 125

    Satoh, Y., Kawai, H., Kudo, N., Kawashima, Y. & Mitsumoto, A. Temperature rhythm reentrains faster than locomotor rhythm after a light phase shift. Physiol. Behav. 88, 404–410 (2006).

  126. 126

    Cardinal, R.N. & Aitken, M.R. Whisker: a client-server high-performance multimedia research control system. Behav. Res. Methods 42, 1059–1071 (2010).

Download references


The protocols described here are those that are currently used in our laboratory, and they were written by current members of the group. However, many researchers have contributed to the development of touchscreen tasks, and we gratefully acknowledge their contribution. They include S. Bartko, J. Brigman, S. Forwood, C. Graybeal, A. Izquierdo, L. Lyon, A. Marti, K. McAllister, S. McTighe, J. Nithianantharajah, C. Romberg, J. Talpos and B. Winters. The research leading to these results has received support from the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008, of which resources are composed of a European Federation of Pharmaceutical Industries and Associations in-kind contribution and financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013); the Wellcome Trust/Medical Research Council (089703/Z/09/Z) and Alzheimer's Research UK (ART/PG2006/5). A.E.H. receives funding from the European Union Seventh Framework Programme under grant agreement nos. 241995 (Project 'GENCODYS') and 242167 (Project 'SYNSYS'). J.A. was supported by the Swedish Academy of Pharmaceutical Sciences. A.H. was supported by the NIAAA Intramural Research Program.

Author information

All authors contributed to the writing of this manuscript. A.E.H. coordinated this effort.

Correspondence to Alexa E Horner.

Ethics declarations

Competing interests

L.M.S. and T.J.B. consult for Campden Instruments, Ltd. A.E.H. is an employee of Synome, Ltd.

Supplementary information

Supplementary Data 1

Raw data for visual discrimination acquisition of 10-month-old sham-lesioned control rats (n = 10, with a history of PAL and TUNL) using photographic stimuli (C.A.O., unpublished data). These data were used to plot the graph in Figure 11. (XLSX 12 kb)


A mouse performing the visual discrimination task with “lines-grid” stimuli in the touchscreen apparatus by Campden Instruments, Ltd. (AVI 14552 kb)

Supplementary Video 1

A mouse performing the visual discrimination task with “lines-grid” stimuli in the touchscreen apparatus by Campden Instruments, Ltd. (AVI 14552 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horner, A., Heath, C., Hvoslef-Eide, M. et al. The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc 8, 1961–1984 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.