Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

DNA nanotubes for NMR structure determination of membrane proteins

Abstract

Finding a way to determine the structures of integral membrane proteins using solution nuclear magnetic resonance (NMR) spectroscopy has proved to be challenging. A residual-dipolar-coupling–based refinement approach can be used to resolve the structure of membrane proteins up to 40 kDa in size, but to do this you need a weak-alignment medium that is detergent-resistant and it has thus far been difficult to obtain such a medium suitable for weak alignment of membrane proteins. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400-nm-long six-helix bundles, each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, toward collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes using counter ions and small DNA-binding molecules. This detergent-resistant liquid-crystal medium offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility and structural programmability. Production of sufficient nanotubes for four or five NMR experiments can be completed in 1 week by a single individual.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA nanotubes design.
Figure 2: Characterization of DNA nanotubes liquid crystal.
Figure 3: A flowchart diagram summarizing the steps involved in and time required for setting up a large-scale synthesis of detergent-resistant DNA nanotubes.
Figure 4: Folding, purification and characterization of DNA six-helix bundle.
Figure 5: Residual dipolar couplings measurement in the presence of small molecule.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Seeman, N.C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  Google Scholar 

  2. Seeman, N.C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    Article  CAS  Google Scholar 

  3. Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  4. Douglas, S.M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  5. Dietz, H., Douglas, S.M. & Shih, W.M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  CAS  Google Scholar 

  6. Douglas, S.M., Chou, J.J. & Shih, W.M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl. Acad. Sci. USA 104, 6644–6648 (2007).

    Article  CAS  Google Scholar 

  7. Berardi, M.J., Shih, W.M., Harrison, S.C. & Chou, J.J. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476, 109–113 (2011).

    Article  CAS  Google Scholar 

  8. Wallin, E. & Heijne von, G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038 (1998).

    Article  CAS  Google Scholar 

  9. Goffeau, A. et al. Life with 6000 genes. Science 274 546, 563–567 (1996).

    Article  Google Scholar 

  10. Landry, Y. & Gies, J. Drugs and their molecular targets: an updated overview. Fundam. Clin. Pharmacol. 22, 1–18 (2008).

    Article  CAS  Google Scholar 

  11. Myers, J.K., Beihoffer, L.A. & Sanders, C.R. Phenotology of disease-linked proteins. Hum. Mutat. 25, 90–97 (2005).

    Article  CAS  Google Scholar 

  12. Groom, C.R. & Hopkins, A.L. Protein kinase drugs–optimism doesn't wait on facts. Drug Discov. Today 7, 801–802 (2002).

    Article  Google Scholar 

  13. Schnell, J.R. & Chou, J.J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451, 591–595 (2008).

    Article  CAS  Google Scholar 

  14. Hiller, S. et al. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321, 1206–1210 (2008).

    Article  CAS  Google Scholar 

  15. Wang, J., Pielak, R.M., McClintock, M.A. & Chou, J.J. Solution structure and functional analysis of the influenza B proton channel. Nat. Struct. Mol. Biol. 16, 1267–1271 (2009).

    Article  CAS  Google Scholar 

  16. Zhou, Y. et al. NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol. Cell 31, 896–908 (2008).

    Article  CAS  Google Scholar 

  17. Van Horn, W.D. et al. Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324, 1726–1729 (2009).

    Article  CAS  Google Scholar 

  18. Gautier, A., Mott, H.R., Bostock, M.J., Kirkpatrick, J.P. & Nietlispach, D. Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat. Struct. Mol. Biol. 17, 768–774 (2010).

    Article  CAS  Google Scholar 

  19. Kang, C. & Li, Q. Solution NMR study of integral membrane proteins. Curr. Opin. Chem. Biol. 15, 560–569 (2011).

    Article  CAS  Google Scholar 

  20. Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  Google Scholar 

  21. Prestegard, J.H. New techniques in structural NMR–anisotropic interactions. Nat. Struct. Biol. 5 (suppl.), 517–522 (1998).

    Article  CAS  Google Scholar 

  22. Tjandra, N. & Bax, A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114 (1997).

    Article  CAS  Google Scholar 

  23. Bax, A., Kontaxis, G. & Tjandra, N. Dipolar couplings in macromolecular structure determination. Meth. Enzymol. 339, 127–174 (2001).

    Article  CAS  Google Scholar 

  24. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. & Prestegard, J.H. Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc. Natl. Acad. Sci. USA 92, 9279–9283 (1995).

    Article  CAS  Google Scholar 

  25. Hansen, M.R., Mueller, L. & Pardi, A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5, 1065–1074 (1998).

    Article  CAS  Google Scholar 

  26. Rückert, M. & Otting, G. Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J. Am. Chem. Soc. 122, 7793–7797 (2000).

    Article  Google Scholar 

  27. Prosser, R.S., Losonczi, J.A. & Shiyanovskaya, I.V. Use of a novel aqueous liquid crystalline medium for high-resolution NMR of macromolecules in solution. J. Am. Chem. Soc. 120, 11010–11011 (1998).

    Article  CAS  Google Scholar 

  28. Fleming, K., Gray, D., Prasannan, S. & Matthews, S. Cellulose crystallites: a new and robust liquid crystalline medium for the measurement of residual dipolar couplings. J. Am. Chem. Soc. 122, 5224–5225 (2000).

    Article  CAS  Google Scholar 

  29. Tycko, R., Blanco, F.J. & Ishii, Y. Alignment of biopolymers in strained gels: a new way to create detectable dipoledipole couplings in high-resolution biomolecular NMR. J. Am. Chem. Soc. 122, 9340–9341 (2000).

    Article  CAS  Google Scholar 

  30. Jones, D.H. & Opella, S.J. Weak alignment of membrane proteins in stressed polyacrylamide gels. J. Magn. Reson. 171, 258–269 (2004).

    Article  CAS  Google Scholar 

  31. Oxenoid, K. & Chou, J.J. The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc. Natl. Acad. Sci. USA 102, 10870–10875 (2005).

    Article  CAS  Google Scholar 

  32. Chou, J.J., Kaufman, J.D., Stahl, S.J., Wingfield, P.T. & Bax, A. Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel. J. Am. Chem. Soc. 124, 2450–2451 (2002).

    Article  CAS  Google Scholar 

  33. Chou, J.J., Gaemers, S., Howder, B., Louis, J.M. & Bax, A. A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. J. Biomol. NMR 21, 377–382 (2001).

    Article  CAS  Google Scholar 

  34. Park, S.H., Son, W.S., Mukhopadhyay, R., Valafar, H. & Opella, S.J. J. Am. Chem. Soc. 131, 14140–14141 (2009).

    Article  CAS  Google Scholar 

  35. Ma, J., Goldberg, G.I. & Tjandra, N. Weak alignment of biomacromolecules in collagen gels: an alternative way to yield residual dipolar couplings for NMR measurements. J. Am. Chem. Soc. 130, 16148–16149 (2008).

    Article  CAS  Google Scholar 

  36. Lorieau, J., Yao, L. & Bax, A. Liquid crystalline phase of G-tetrad DNA for NMR study of detergent-solubilized proteins. J. Am. Chem. Soc. 130, 7536–7537 (2008).

    Article  CAS  Google Scholar 

  37. Marvin, D.A. Filamentous phage structure, infection and assembly. Curr. Opin. Struct. Biol. 8, 150–158 (1998).

    Article  CAS  Google Scholar 

  38. Call, M.E., Wucherpfennig, K.W. & Chou, J.J. The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat. Immunol. 11, 1023–1029 (2010).

    Article  CAS  Google Scholar 

  39. Zweckstetter, M. NMR: prediction of molecular alignment from structure using the PALES software. Nat. Protoc. 3, 679–690 (2008).

    Article  CAS  Google Scholar 

  40. Zweckstetter, M. & Bax, A. Characterization of molecular alignment in aqueous suspensions of Pf1 bacteriophage. J. Biomol. NMR 20, 365–377 (2001).

    Article  CAS  Google Scholar 

  41. Flynn, P.F., Mattiello, D.L., Hill, H.D.W. & Wand, A.J. Optimal use of cryogenic probe technology in NMR studies of proteins. J. Am. Chem. Soc. 122, 4823–4824 (2000).

    Article  CAS  Google Scholar 

  42. Kelly, A.E., Ou, H.D., Withers, R. & Dötsch, V. Low-conductivity buffers for high-sensitivity NMR measurements. J. Am. Chem. Soc. 124, 12013–12019 (2002).

    Article  CAS  Google Scholar 

  43. Robosky, L.C., Reily, M.D. & Avizonis, D. Improving NMR sensitivity by use of salt-tolerant cryogenically cooled probes. Anal. Bioanal. Chem. 387, 529–532 (2007).

    Article  CAS  Google Scholar 

  44. Voehler, M.W., Collier, G., Young, J.K., Stone, M.P. & Germann, M.W. Performance of cryogenic probes as a function of ionic strength and sample tube geometry. J. Magn. Reson. 183, 102–109 (2006).

    Article  CAS  Google Scholar 

  45. Zweckstetter, M., Hummer, G. & Bax, A. Prediction of charge-induced molecular alignment of biomolecules dissolved in dilute liquid-crystalline phases. Biophys. J. 86, 3444–3460 (2004).

    Article  CAS  Google Scholar 

  46. Neto, B.A.D. & Lapis, A.A.M. Recent developments in the chemistry of deoxyribonucleic acid (DNA) intercalators: principles, design, synthesis, applications and trends. Molecules 14, 1725–1746 (2009).

    Article  CAS  Google Scholar 

  47. Nafisi, S., Saboury, A.A., Keramat, N., Neault, J. & Tajmir-Riahi, H. Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue. J. Mol. Struct. 827, 35–43 (2007).

    Article  CAS  Google Scholar 

  48. Furse, K.E. & Corcelli, S.A. The dynamics of water at DNA interfaces: computational studies of Hoechst 33258 bound to DNA. J. Am. Chem. Soc. 130, 13103–13109 (2008).

    Article  CAS  Google Scholar 

  49. Banerjee, D. & Pal, S.K. Ultrafast charge transfer and solvation of DNA minor groove binder: Hoechst 33258 in restricted environments. Chem. Phys. Lett. 432, 257–262 (2006).

    Article  CAS  Google Scholar 

  50. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  51. Zweckstetter, M. & Bax, A. Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J. Am. Chem. Soc. 122, 3791–3792 (2000).

    Article  CAS  Google Scholar 

  52. Cornilescu, G., Marquardt, J.L., Ottiger, M. & Bax, A. Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J. Am. Chem. Soc. 120, 6836–6837 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Ayala and J. Boisbouvier (CNRS, Institut de Biologie Structurale) for the gift of the ubiquitin vector and R. Sounier (Harvard Medical School) for helpful discussions. This work was supported by the US National Institutes of Health (NIH) grants 1U54GM094608 to J.J.C., and 1DP2OD004641 and 1U54GM094608 to W.M.S.

Author information

Authors and Affiliations

Authors

Contributions

B.G. and M.A.M. used, developed and troubleshot the technique. B.G. optimized procedures for NMR experiments, data processing and analysis. W.M.S. supervised the projects and J.J.C. participated in technology design and discussions. B.G. and W.M.S. wrote the manuscript, and J.J.C and M.A.M. revised the paper.

Corresponding author

Correspondence to William M Shih.

Ethics declarations

Competing interests

J.J.C. and W.M.S. declare competing financial interests. A patent (US Patent application no. 13/090892) entitled “Nucleic-acid-nanotube liquid crystals and use for NMR structure determination of detergent-solubilized membrane proteins” was filed in 2007 on behalf of the Dana-Farber Cancer Institute and Harvard Medical School by Edwards Angell Palmer & Dodge LLP, listing J.J.C. and W.M.S. as two of the co-inventors.

Supplementary information

Supplementary Table 1

DNA oligonucleotide staple sequences (PDF 436 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellot, G., McClintock, M., Chou, J. et al. DNA nanotubes for NMR structure determination of membrane proteins. Nat Protoc 8, 755–770 (2013). https://doi.org/10.1038/nprot.2013.037

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.037

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing