Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

High-throughput ballistic injection nanorheology to measure cell mechanics

Abstract

High-throughput ballistic injection nanorheology is a method for the quantitative study of cell mechanics. Cell mechanics are measured by ballistic injection of submicron particles into the cytoplasm of living cells and tracking the spontaneous displacement of the particles at high spatial resolution. The trajectories of the cytoplasm-embedded particles are transformed into mean-squared displacements, which are subsequently transformed into frequency-dependent viscoelastic moduli and time-dependent creep compliance of the cytoplasm. This method allows for the study of a wide range of cellular conditions, including cells inside a 3D matrix, cell subjected to shear flows and biochemical stimuli, and cells in a live animal. Ballistic injection lasts <1 min and is followed by overnight incubation. Multiple particle tracking for one cell lasts <1 min. Forty cells can be examined in <1 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Minimal cell death is induced by ballistic injection of nanoparticles into the cytoplasm of adherent cells.
Figure 2: Biolistic machine used to introduce submicron particles inside cells for high-throughout ballistic nanorheology (htBIN) analysis.
Figure 3: Image processing steps taken to enhance the high-resolution tracking of fluorescent nanoparticles in the cytoplasm of live cells.
Figure 4: htBIN analysis of normal and cancer human ovarian epithelial cells.

Similar content being viewed by others

References

  1. Hoh, J.H. & Schoenenberger, C.A. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell. Sci. 107, 1105–1114 (1994).

    PubMed  Google Scholar 

  2. Radmacher, M., Cleveland, J.P., Fritz, H.G., Hansma, H.G. & Hansma, P.K. Mapping interactions forces with the AFM. Biophys. J. 66, 2159–2165 (1994).

    Article  CAS  Google Scholar 

  3. Domke, J., Parak, W.J., George, M., Gaub, H.E. & Radmacher, M. Mapping the mechanical pulse of single cardiomyocytes with the atomic force microscope. Eur. Biophys. J. 28, 179–186 (1999).

    Article  CAS  Google Scholar 

  4. Radmacher, M. Studying the mechanics of cellular processes by atomic force microscopy. Methods Cell. Biol. 83, 347–372 (2007).

    Article  CAS  Google Scholar 

  5. Hale, C.M., Sun, S.X. & Wirtz, D. Resolving the role of actoymyosin contractility in cell microrheology. PLoS ONE 4, e7054 (2009).

    Article  Google Scholar 

  6. Daniels, B.R., Masi, B.C. & Wirtz, D. Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos. Biophys. J. 90, 4712–4719 (2006).

    Article  CAS  Google Scholar 

  7. Lee, J.S. et al. Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow. J. Cell. Sci. 119, 1760–1768 (2006).

    Article  CAS  Google Scholar 

  8. Panorchan, P., Lee, J.S., Kole, T.P., Tseng, Y. & Wirtz, D. Microrheology and ROCK signaling of human endothelial cells embedded in a 3D matrix. Biophys. J. 91, 3499–3507 (2006).

    Article  CAS  Google Scholar 

  9. Zhou, X. et al. Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev. 22, 1231–1243 (2008).

    Article  CAS  Google Scholar 

  10. Lekka, M. & Laidler, P. Applicability of AFM in cancer detection. Nat. Nanotechnol. 4, 72; author reply 72–73 (2009).

    Article  CAS  Google Scholar 

  11. Mason, T.G., Ganesan, K., van Zanten, J.V., Wirtz, D. & Kuo, S.C. Particle-tracking microrheology of complex fluids. Phys. Rev. Lett. 79, 3282–3285 (1997).

    Article  CAS  Google Scholar 

  12. Wirtz, D. Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38, 301–326 (2009).

    Article  CAS  Google Scholar 

  13. Wu, J. & Dai, L.L. Apparent microrheology of oil-water interfaces by single-particle tracking. Langmuir 23, 4324–4331 (2007).

    Article  CAS  Google Scholar 

  14. Wilson, L.G., Harrison, A.W., Schofield, A.B., Arlt, J. & Poon, W.C. Passive and active microrheology of hard-sphere colloids. J. Phys. Chem. B. 113, 3806–3812 (2009).

    Article  CAS  Google Scholar 

  15. Vanapalli, S.A., Li, Y., Mugele, F. & Duits, M.H. On the origins of the universal dynamics of endogenous granules in mammalian cells. Mol. Cell. Biomech. 6, 191–201 (2009).

    PubMed  Google Scholar 

  16. Sivaramakrishnan, S., DeGiulio, J.V., Lorand, L., Goldman, R.D. & Ridge, K.M. Micromechanical properties of keratin intermediate filament networks. Proc. Natl. Acad. Sci. USA 105, 889–894 (2008).

    Article  CAS  Google Scholar 

  17. Silburn, S.A., Saunter, C.D., Girkin, J.M. & Love, G.D. Multidepth, multiparticle tracking for active microrheology using a smart camera. Rev. Sci. Instrum. 82, 033712 (2011).

    Article  Google Scholar 

  18. Selvaggi, L. et al. Multiple-particle-tracking to investigate viscoelastic properties in living cells. Methods 51, 20–26 (2010).

    Article  CAS  Google Scholar 

  19. Savin, T. & Doyle, P.S. Static and dynamic errors in particle tracking microrheology. Biophys. J. 88, 623–638 (2005).

    Article  CAS  Google Scholar 

  20. Rogers, S.S., Waigh, T.A. & Lu, J.R. Intracellular microrheology of motile Amoeba proteus. Biophys. J. 94, 3313–3322 (2008).

    Article  CAS  Google Scholar 

  21. Rogers, S.S., van der Walle, C. & Waigh, T.A. Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa. Langmuir 24, 13549–13555 (2008).

    Article  CAS  Google Scholar 

  22. Rathgeber, S., Beauvisage, H.J., Chevreau, H., Willenbacher, N. & Oelschlaeger, C. Microrheology with fluorescence correlation spectroscopy. Langmuir 25, 6368–6376 (2009).

    Article  CAS  Google Scholar 

  23. Papagiannopoulos, A., Waigh, T.A. & Hardingham, T.E. The viscoelasticity of self-assembled proteoglycan combs. Faraday Discuss. 139, 337–357; discussion 399–417, 419–420 (2008).

    Article  CAS  Google Scholar 

  24. Papagiannopoulos, A., Fernyhough, C.M. & Waigh, T.A. The microrheology of polystyrene sulfonate combs in aqueous solution. J. Chem. Phys. 123, 214904 (2005).

    Article  CAS  Google Scholar 

  25. Moschakis, T., Murray, B.S. & Dickinson, E. Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide. Langmuir 22, 4710–4719 (2006).

    Article  CAS  Google Scholar 

  26. Larsen, T.H. & Furst, E.M. Microrheology of the liquid-solid transition during gelation. Phys. Rev. Lett. 100, 146001 (2008).

    Article  Google Scholar 

  27. Hasnain, I.A. & Donald, A.M. Microrheological characterization of anisotropic materials. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73, 031901 (2006).

    Article  CAS  Google Scholar 

  28. Haro-Perez, C., Garcia-Castillo, A. & Arauz-Lara, J.L. Confinement-induced fluid-gel transition in polymeric solutions. Langmuir 25, 8911–8914 (2009).

    Article  CAS  Google Scholar 

  29. del Alamo, J.C., Norwich, G.N., Li, Y.S., Lasheras, J.C. & Chien, S. Anisotropic rheology and directional mechanotransduction in vascular endothelial cells. Proc. Natl. Acad. Sci. USA 105, 15411–15416 (2008).

    Article  CAS  Google Scholar 

  30. Crocker, J.C. & Hoffman, B.D. Multiple-particle tracking and two-point microrheology in cells. Methods Cell. Biol. 83, 141–178 (2007).

    Article  CAS  Google Scholar 

  31. Corrigan, A.M. & Donald, A.M. Particle tracking microrheology of gel-forming amyloid fibril networks. Eur. Phys. J. E Soft Matter 28, 457–462 (2009).

    Article  CAS  Google Scholar 

  32. Corrigan, A.M. & Donald, A.M. Passive microrheology of solvent-induced fibrillar protein networks. Langmuir 25, 8599–8605 (2009).

    Article  CAS  Google Scholar 

  33. Baker, E.L., Lu, J., Yu, D., Bonnecaze, R.T. & Zaman, M.H. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys. J. 99, 2048–2057 (2010).

    Article  CAS  Google Scholar 

  34. Baker, E.L., Bonnecaze, R.T. & Zaman, M.H. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys. J. 97, 1013–1021 (2009).

    Article  CAS  Google Scholar 

  35. Alam, M.M. & Mezzenga, R. Particle tracking microrheology of lyotropic liquid crystals. Langmuir 27, 6171–6178 (2011).

    Article  CAS  Google Scholar 

  36. Addas, K.M., Schmidt, C.F. & Tang, J.X. Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 021503 (2004).

    Article  Google Scholar 

  37. Tseng, Y., Kole, T.P. & Wirtz, D. Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys. J. 83, 3162–3176 (2002).

    Article  CAS  Google Scholar 

  38. Kole, T.P., Tseng, Y. & Wirtz, D. Intracellular microrheology as a tool for the measurement of the local mechanical properties of live cells. Methods Cell. Biol. 78, 45–64 (2004).

    Article  Google Scholar 

  39. Kole, T.P., Tseng, Y., Huang, L., Katz, J.L. & Wirtz, D. Rho kinase regulates the intracellular micromechanical response of adherent cells to rho activation. Mol. Biol. Cell. 15, 3475–3484 (2004).

    Article  CAS  Google Scholar 

  40. Kole, T.P., Tseng, Y., Jiang, I., Katz, J.L. & Wirtz, D. Intracellular mechanics of migrating fibroblasts. Mol. Biol. Cell. 16, 328–338 (2005).

    Article  CAS  Google Scholar 

  41. Gupton, S.L. et al. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J. Cell. Biol. 168, 619–631 (2005).

    Article  CAS  Google Scholar 

  42. Xu, J., Viasnoff, V. & Wirtz, D. Compliance of actin filament networks measured by particle-tracking microrheology and diffusing wave spectroscopy. Rheologica. Acta 37, 387–398 (1998).

    Article  CAS  Google Scholar 

  43. Tseng, Y. et al. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. Biochem. Biophys. Res. Commun. 334, 183–192 (2005).

    Article  CAS  Google Scholar 

  44. Panorchan, P. et al. Probing cellular mechanical responses to stimuli using ballistic intracellular nanorheology. Methods Cell. Biol. 83, 115–140 (2007).

    CAS  PubMed  Google Scholar 

  45. Lee, J.S. et al. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys. J. 93, 2542–2552 (2007).

    Article  CAS  Google Scholar 

  46. Rufener, K., Palmer, A., Xu, J. & Wirtz, D. High-frequency dynamics and microrheology of macromolecular solutions measured by diffusing wave spectroscopy: the case of actin filament networks. J. NonNewtonian Fluid. Mech. 82, 303–314 (1999).

    Article  CAS  Google Scholar 

  47. Mason, T.G., Dhople, A. & Wirtz, D. in Statistical Mechanics in Physics and Biology (eds. Wirtz, D. & Halsey, T.C.) 153–158 (Materials Research Society, 1997).

  48. Mizuno, D., Tardin, C., Schmidt, C.F. & Mackintosh, F.C. Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007).

    Article  CAS  Google Scholar 

  49. Lau, A.W., Hoffman, B.D., Davies, A., Crocker, J.C. & Lubensky, T.C. Microrheology, stress fluctuations, and active behavior of living cells. Phys. Rev. Lett. 91, 198101 (2003).

    Article  CAS  Google Scholar 

  50. Hoffman, B.D., Massiera, G., Van Citters, K.M. & Crocker, J.C. The consensus mechanics of cultured mammalian cells. Proc. Natl. Acad. Sci. USA 103, 10259–10264 (2006).

    Article  CAS  Google Scholar 

  51. Yamada, S., Wirtz, D. & Kuo, S.C. Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 78, 1736–1747 (2000).

    Article  CAS  Google Scholar 

  52. Spence, P., Gupta, V., Stephens, D.J. & Hudson, A.J. Optimising the precision for localising fluorescent proteins in living cells by 2D Gaussian fitting of digital images: application to COPII-coated endoplasmic reticulum exit sites. Eur. Biophys. J. 37, 1335–1349 (2008).

    Article  Google Scholar 

  53. Crocker, J.C. & Grier, D.G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    Article  CAS  Google Scholar 

  54. Gonzalez, R.C. & Woods, R.E. Digital Image Processing (Prentice Hall, 2002).

  55. Wu, P.H., Nelson, N. & Tseng, Y. A general method for improving spatial resolution by optimization of electron multiplication in CCD imaging. Opt. Express 18, 5199–5212 (2010).

    Article  CAS  Google Scholar 

  56. Wu, P.H., Arce, S.H., Burney, P.R. & Tseng, Y. A novel approach to high accuracy of video-based microrheology. Biophys. J. 96, 5103–5111 (2009).

    Article  CAS  Google Scholar 

  57. Savitzky, A. & Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    Article  CAS  Google Scholar 

  58. Qian, H., Sheetz, M.P. & Elson, E.L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60, 910–921 (1991).

    Article  CAS  Google Scholar 

  59. Mason, T.G. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation. Rheologica. Acta 39, 371–378 (2000).

    Article  CAS  Google Scholar 

  60. Dasgupta, B.R., Tee, S.-Y., Crocker, J.C., Friseken, B.J. & Weitz, D.A. Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Phys. Rev. E 65, 051505 (2002).

    Article  Google Scholar 

  61. Palmer, A., Xu, J. & Wirtz, D. High-frequency rheology of crosslinked actin networks measured by diffusing wave spectroscopy. Rheologica. Acta 37, 97–108 (1998).

    Article  CAS  Google Scholar 

  62. Palmer, A., Xu, J., Kuo, S.C. & Wirtz, D. Diffusing wave spectroscopy microrheology of actin filament networks. Biophys. J. 76, 1063–1071 (1999).

    Article  CAS  Google Scholar 

  63. Daniels, B.R. et al. Differences in the microrheology of human embryonic stem cells and human induced pluripotent stem cells. Biophys. J. 99, 3563–3570 (2010).

    Article  CAS  Google Scholar 

  64. Hale, C.M. et al. Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys. J. 95, 5462–5475 (2008).

    Article  CAS  Google Scholar 

  65. Stewart-Hutchinson, P.J., Hale, C.M., Wirtz, D. & Hodzic, D. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp. Cell. Res. 314, 1892–1905 (2008).

    Article  CAS  Google Scholar 

  66. Tseng, Y., Lee, J.S., Kole, T.P., Jiang, I. & Wirtz, D. Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J. Cell. Sci. 117, 2159–2167 (2004).

    Article  CAS  Google Scholar 

  67. Baker, E.L., Lu, J., Yu, D., Bonnecaze, R.T. & Zaman, M.H. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys. J. 99, 2048–2057 (2010).

    Article  CAS  Google Scholar 

  68. Rahman, A., Tseng, Y. & Wirtz, D. Micromechanical coupling between cell surface receptors and RGD peptides. Biochem. Biophys. Res. Commun. 296, 771–778 (2002).

    Article  CAS  Google Scholar 

  69. Fire, A. Integrative transformation of Caenorhabditis elegans. EMBO J. 5, 2673–2680 (1986).

    Article  CAS  Google Scholar 

  70. Panorchan, P., Tseng, Y. & Wirtz, D. Structure-function relationship of biological gels revealed by multiple particle tracking and differential interference contrast microscopy: The case of human lamin networks. Phys. Rev. E 70, 041906 (2004).

    Article  Google Scholar 

  71. Fraley, S.I. et al. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat. Cell Biol. 12, 598–604 (2010).

    Article  CAS  Google Scholar 

  72. Fraley, S.I., Feng, Y., Wirtz, D. & Longmore, G.D. Reply: reducing background fluorescence reveals adhesions in 3D matrices. Nat. Cell Biol. 13, 5–7 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Normal human ovarian epithelial cells (OSE10) and ovarian cancer cells (OVCAR3) were provided by I.-M. Shih (Department of Pathology, Johns Hopkins University School of Medicine). This work was supported in part by NIH grants U54CA143868 and R21CA137686, and RO1GM084204. We thank members of the Wirtz and Tseng labs for technical advice and reagents.

Author information

Authors and Affiliations

Authors

Contributions

P.-H.W., C.M.H. and W.-C.C. conducted experiments. P.-H.W., C.M.H., J.S.H.L., Y.T. and D.W. designed the experiments, analyzed the results and wrote the paper.

Corresponding authors

Correspondence to Yiider Tseng or Denis Wirtz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, PH., Hale, C., Chen, WC. et al. High-throughput ballistic injection nanorheology to measure cell mechanics. Nat Protoc 7, 155–170 (2012). https://doi.org/10.1038/nprot.2011.436

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.436

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing