Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis of alkyl- and aryl-amino-substituted anthraquinone derivatives by microwave-assisted copper(0)-catalyzed Ullmann coupling reactions


This protocol describes the efficient, generally applicable Ullmann coupling reaction of bromaminic acid with alkyl- or aryl-amines in phosphate buffer under microwave irradiation using elemental copper as a catalyst. The reaction leads to a number of biologically active compounds. As a prototypical example, the synthesis of a new, potent antagonist of human platelet P2Y12 receptors, which has potential as an antithrombotic drug, is described in detail. The optimized protocol includes a description of an appropriate reaction setup, thin layer chromatography for monitoring the reaction and a procedure for the isolation, purification and characterization of the anticipated product. The reaction is performed without the use of a glove box and there is no requirement for an inert atmosphere. The reaction typically proceeds within 2–30 min, the protocol, including workup, generally takes 1–3 h to complete.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10: Purification of anthraquinone derivatives by reverse phase flash column chromatography.
Figure 11: HPLC trace, MS and UV chromatograms of compound 9 (af).


  1. Bean, B.P. Pharmacology and electrophysiology of ATP-activated ion channels. Trends Pharmacol. Sci. 13, 87–90 (1992).

    Article  CAS  Google Scholar 

  2. Inoue, K. et al. Antagonism by reactive blue 2 but not by brilliant blue G of extracellular ATP-evoked responses in PC12 phaeochromocytoma cells. Br. J. Pharmacol. 102, 851–854 (1991).

    Article  CAS  Google Scholar 

  3. Nakazawa, K., Inoue, K., Fujimori, K. & Takanaka, A. Effects of ATP antagonists on purinoceptor-operated inward currents in rat phaeochromocytoma cells. Pflügers Arch. 418, 214–219 (1991).

    Article  CAS  Google Scholar 

  4. Brown, J. & Brown, C.A. Evaluation of reactive blue 2 derivatives as selective antagonists for P2Y receptors. Vasc. Pharmacol. 39, 309–315 (2003).

    Article  Google Scholar 

  5. Burnstock, G. Introduction: P2 receptors. Curr. Top. Med. Chem. 4, 793–803 (2004).

    Article  CAS  Google Scholar 

  6. Tuluc, F., Bültmann, R., Glänzel, M., Frahm, A.W. & Starke, K. P2-receptor antagonists: IV. Blockade of P2-receptor subtypes and ecto-nucleotidases by compounds related to reactive blue 2. Naunyn Schmiedebergs Arch. Pharmacol. 357, 111–120 (1998).

    Article  CAS  Google Scholar 

  7. Ellington, A.E. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  Google Scholar 

  8. Schmiedl, J., Damien, S. & Klaus, K. Reactive dyes for dyeing or printing synthetic fibers and their preparation. WO Patent 2004050769 A2 filed 24 Nov. 2003, and issued 17 Jun 2004.

  9. Lauk, U. & Nowack, P. Anthraquinone dyes, their production and their use in color filters. US Patent 2005/0150061 A1 filed 13 Mar. 2003, and issued 14 Jul 2005.

  10. Glänzel, M., Bültmann, R., Starke, K. & Frahm, A.W. Constitutional isomers of Reactive Blue 2—selective P2Y-receptor antagonists? Eur. J. Med. Chem. 38, 303–312 (2003).

    Article  Google Scholar 

  11. Glänzel, M., Bültmann, R., Starke, K. & Frahm, A.W. Structure–activity relationships of novel P2-receptor antagonists structurally related to Reactive Blue 2. Eur. J. Med. Chem. 40, 1262–1276 (2005).

    Article  Google Scholar 

  12. Glänzel, M., Bültmann, R., Starke, K. & Frahm, A.W. Members of the acid blue 129 family as potent and selective P2Y-receptor antagonists. Drug Dev. Res. 59, 64–71 (2003).

    Article  Google Scholar 

  13. Baqi, Y. & Müller, C.E. Rapid and efficient microwave-assisted copper(0)-catalyzed Ullmann coupling reaction: general access to anilinoanthraquinone derivatives. Org. Lett. 9, 1271–1274 (2007).

    Article  CAS  Google Scholar 

  14. Weyler, S. et al. Combinatorial synthesis of anilinoanthraquinone derivatives and evaluation as non nucleotide-derived P2Y2 receptor antagonists. Bioorg. Med. Chem. Lett. 18, 223–227 (2008).

    Article  CAS  Google Scholar 

  15. Baqi, Y., Atzler, K., Köse, M., Glänzel, M. & Müller, C.E. High-affinity, non nucleotide-derived competitive antagonists of platelet P2Y12 receptors. J. Med. Chem. 52, 3784–3793 (2009).

    Article  CAS  Google Scholar 

  16. Baqi, Y., Weyler, S., Iqbal, J., Zimmermann, H. & Müller, C.E. Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases). Purinergic Signal. 5, 91–106 (2009).

    Article  CAS  Google Scholar 

  17. Baqi, Y. et al. Development of potent and selective inhibitors of ecto-5′-nucleotidase based on an anthraquinone scaffold. J. Med. Chem. 53, 2076–2086 (2010).

    Article  CAS  Google Scholar 

  18. Müller, C.E. P2-pyrimidinergic receptors and their ligands. Curr. Pharm. Des. 8, 2353–2369 (2002).

    Article  Google Scholar 

  19. Brunschweiger, A. & Müller, C.E. P2 receptors activated by uracil nucleotides–an update. Curr. Med. Chem. 13, 289–312 (2006).

    Article  CAS  Google Scholar 

  20. Iqbal, J., Vollmayer, P., Braun, N., Zimmermann, H. & Müller, C.E. A capillary electrophoresis method for the characterization of ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) and the analysis of inhibitors by in-capillary enzymatic microreaction. Purinergic Signal. 1, 349–358 (2005).

    Article  CAS  Google Scholar 

  21. Müller, C.E. et al. Polyoxometalates–a new class of potent ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) inhibitors. Bioorg. Med. Chem. Lett. 16, 5943–5947 (2006).

    Article  Google Scholar 

  22. Ullmann, F. Über eine neue Bildungsweise von Diphenylaminderivaten (On a new formation of diphenylamine derivatives). Chem. Ber. 36, 2382–2384 (1903).

    Article  Google Scholar 

  23. Ullmann, F. Über eine neue Darstellungsweise von Phenyläthersalicylsäure (On a new preparation of phenylethersalicylic acid). Chem. Ber. 37, 853–854 (1904).

    Article  Google Scholar 

  24. Altman, R.A. & Buchwald, S.A. Cu-catalyzed Goldberg and Ullmann reactions of aryl halides using chelating N- and O-based ligands. Nat. Protoc. 2, 2474–2479 (2007).

    Article  CAS  Google Scholar 

  25. Pearson, J.C., Burton, S.J. & Lowe, C.R. Affinity precipitation of lactate dehydrogenase with a triazine dye derivative: selective precipitation of rabbit muscle lactate dehydrogenase with a procion blue H-B analog. Anal. Biochem. 158, 382–389 (1986).

    Article  CAS  Google Scholar 

  26. Eltz, A. Reactive dyes useful for dyeing and printing e.g. cellulose, polyamide or polyester. DE Patent 4417719 A1 filed 20 May 1994, and issued 23 Nov 1995.

  27. Dallinger, D. & Kappe, C.O. Rapid preparation of the mitotic kinesin Eg5 inhibitor monastrol using controlled microwave-assisted synthesis. Nat. Protoc. 2, 317–321 (2007).

    Article  CAS  Google Scholar 

  28. Dallinger, D. & Kappe, C.O. Automated generation of a dihydropyrimidine compound library using microwave-assisted processing. Nat. Protoc. 2, 1713–1721 (2007).

    Article  CAS  Google Scholar 

  29. Hayes, B.L. Introduction to microwave chemistry. in Microwave Synthesis, Chemistry at the Speed of Light, 16–28 (CEM Publishing, Matthews, North Carolina, 2002).

    Google Scholar 

  30. Murray, J.K. & Gellman, S.H. Parallel synthesis of peptide libraries using microwave irradiation. Nat. Protoc. 2, 624–631 (2007).

    Article  CAS  Google Scholar 

  31. Bacsa, B. & Kappe, C.O. Rapid solid-phase synthesis of a calmodulin binding peptide using controlled microwave irradiation. Nat. Protoc. 2, 2222–2227 (2007).

    Article  CAS  Google Scholar 

  32. Guzmán-Mejía, R., Reyes-Rangel, G. & Juaristi, E. Preparation of chiral derivatives of β-Ala containing the α-phenylethyl group: useful starting materials for the asymmetric synthesis of β-amino acids. Nat. Protoc. 2, 2759–2766 (2007).

    Article  Google Scholar 

  33. Li, X. & Danishefsky, S.J. Noncatalytic reaction of isonitriles and carboxylic acids en route to amide-type linkages. Nat. Protoc. 3, 1666–1670 (2008).

    Article  Google Scholar 

  34. Cattaneo, M. Platelet P2 receptors: old and new targets for antithrombotic drugs. Expert. Rev. Cardiovasc. Ther. 5, 45–55 (2007).

    Article  CAS  Google Scholar 

  35. Gachet, C. Regulation of platelet functions by P2 receptors. Annu. Rev. Pharmacol. Toxicol. 46, 277–300 (2006).

    Article  CAS  Google Scholar 

  36. Hollopeter, G. et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409, 202–207 (2001).

    Article  CAS  Google Scholar 

  37. Hoffmann, K. et al. Interaction of new, very potent non-nucleotide antagonists with Arg256 of the human platelet P2Y12 receptor. J. Pharmacol. Exp. Ther. 331, 648–655 (2009).

    Article  CAS  Google Scholar 

  38. Savi, P. et al. Identification and biological activity of the active metabolite of clopidogrel. Thromb. Haemost. 84, 891–896 (2000).

    Article  CAS  Google Scholar 

  39. Sugidachi, A., Asai, F., Ogawa, T., Inoue, T. & Koike, H. The in vivo pharmacological profile of CS-747, a novel antiplatelet agent with platelet ADP receptor antagonist properties. Br. J. Pharmacol. 129, 1439–1446 (2000).

    Article  CAS  Google Scholar 

  40. Ingall, A.H. et al. Antagonists of the platelet P2T receptor: a novel approach to antithrombotic therapy. J. Med. Chem. 42, 213–220 (1999).

    Article  CAS  Google Scholar 

  41. Boeynaems, J.M., van Giezen, H., Savi, P. & Herbert, J.M. P2Y receptor antagonists in thrombosis. Curr. Opin. Investig. Drugs 6, 275–282 (2005).

    CAS  PubMed  Google Scholar 

  42. van Giezen, J.J. & Humphries, R.G. Preclinical and clinical studies with selective reversible direct P2Y12 antagonists. Semin. Thromb. Hemost. 31, 195–204 (2005).

    Article  CAS  Google Scholar 

  43. Müller, C.E. Prodrug approaches for enhancing the bioavailability of drugs with low solubility. Chem. Biodivers. 6, 2071–2083 (2009).

    Article  Google Scholar 

  44. Baqi, Y. & Müller, C.E. Catalyst-free microwave-assisted aminiation of 2-chloro-5-nitrobenzoic acid. J. Org. Chem. 72, 5908–5911 (2007).

    Article  CAS  Google Scholar 

Download references


Y.B. thanks the Deutscher Akademischer Austauschdienst (DAAD) for a PhD Fellowship. Support by the Deutsche Forschungsgemeinschaft (DFG, GRK804) is gratefully acknowledged. We would like to thank Ms. Marion Schneider for providing us with the LC-MS chromatogram.

Author information

Authors and Affiliations



Y.B. planned and performed the experiments and prepared the first draft of the manuscript. C.E.M. designed the experiments, supervised the work and finalized the manuscript.

Corresponding author

Correspondence to Younis Baqi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baqi, Y., Müller, C. Synthesis of alkyl- and aryl-amino-substituted anthraquinone derivatives by microwave-assisted copper(0)-catalyzed Ullmann coupling reactions. Nat Protoc 5, 945–953 (2010).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing