Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Investigating ADAMTS-mediated aggrecanolysis in mouse cartilage

Abstract

Proteolysis of the cartilage proteoglycan aggrecan is a feature of arthritis. We present a method for analyzing aggrecanolysis in in vitro cultures of 3-week-old mouse femoral head cartilage based on traditional methods developed for large animal species. Investigators can choose either a simple analysis that detects several aggrecan fragments released into culture medium only or a more comprehensive study that detects all fragments present in both the medium and the cartilage matrix. The protocol comprises (i) cartilage culture and optional cartilage extraction, (ii) a quick and simple colorimetric assay for quantitating aggrecan and (iii) neoepitope western blotting to identify specific aggrecan fragments partitioning to the medium or cartilage compartments. The crucial difference between the methods for mice and larger animals is that the proportion of aggrecan in a given sample is normalized to total aggrecan rather than to tissue wet weight. This necessary break from tradition arises because tiny volumes of liquid clinging to mouse cartilage can increase the apparent tissue wet weight, causing unacceptable errors. The protocol has broad application for the in vitro analysis of transgenic mice, particularly those with mutations that affect cartilage remodeling, arthritic disease and skeletal development. The protocol is robust, reliable and takes 7–11 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aggrecanase cleavage sites and neoepitopes in the mouse aggrecan core protein.
Figure 2: Flow chart of the comprehensive and simple protocols.
Figure 3: Harvesting the mouse femoral head.
Figure 4: Analyzing aggrecan release by the dimethylmethylene blue assay.
Figure 5: Western blot analysis of aggrecanolysis by the comprehensive or simple protocol.
Figure 6: Aggrecan fragments identified in medium or cartilage extracts with neoepitope antibodies.

Similar content being viewed by others

References

  1. Hascall, V.C., Sandy, J.D. & Handley, C.J. In Biology of the Synovial Joint (eds. Caterson, B., Archer, C., Benjamin, M. & Ralph, J.) (Harwood Academic Publishers, 1999).

  2. Caterson, B., Flannery, C.R., Hughes, C.E. & Little, C.B. Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol. 19, 333–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Fosang, A.J., Tyler, J.A. & Hardingham, T.E. Effect of interleukin-1 and insulin-like growth factor-1 on the degradation and turnover of proteoglycan and hyaluronate in pig articular cartilage in explant culture. Matrix 11, 17–24 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Fosang, A.J. et al. Generation and novel distribution of matrix metalloproteinase-derived aggrecan fragments in porcine cartilage explants. J. Biol. Chem. 275, 33027–33037 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Tortorella, M.D., Malfait, A., Deccico, C. & Arner, E. The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) in a model of cartilage degradation. Osteoarthr. Cartil. 9, 539–552 (2001).

    Article  CAS  Google Scholar 

  6. Durigova, M. et al. Characterization of an ADAMTS-5-mediated cleavage site in aggrecan in OSM-stimulated bovine cartilage. Osteoarthr. Cartil. 16, 1245–1252 (2008).

    Article  CAS  Google Scholar 

  7. Sztrolovics, R., White, R.J., Roughley, P.J. & Mort, J.S. The mechanism of aggrecan release from cartilage differs with tissue origin and the agent used to stimulate catabolism. Biochem. J. 362, 465–472 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sandy, J.D. & Verscharen, C. Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem. J. 358, 615–626 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ilic, M.Z., Handley, C.J., Robinson, H.C. & Mok, M.T. Mechanism of catabolism of aggrecan by articular cartilage. Archiv. Biochem. Biophys. 294, 115–122 (1992).

    Article  CAS  Google Scholar 

  10. Sandy, J.D., Neame, P.J., Boynton, R.E. & Flannery, C.R. Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J. Biol. Chem. 266, 8683–8685 (1991).

    CAS  PubMed  Google Scholar 

  11. Loulakis, P., Shrikhande, A., Davis, G. & Maniglia, C.A. N-terminal sequence of proteoglycan fragments isolated from medium of interleukin-1-treated articular-cartilage cultures. Putative site(s) of enzymic cleavage. Biochem. J. 284 (Part 2): 589–593 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rogerson, F.M. et al. Evidence of a novel aggrecan-degrading activity in cartilage: studies of mice deficient in both ADAMTS-4 and ADAMTS-5. Arthritis Rheum. 58, 1664–1673 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Stanton, H. et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434, 648–652 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. East, C.J., Stanton, H., Golub, S.B., Rogerson, F.M. & Fosang, A.J. ADAMTS-5 deficiency does not block aggrecanolysis at preferred cleavage sites in the chondroitin sulphate-rich region of aggrecan. J. Biol. Chem. 282, 8632–8640 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ilic, M.Z., East, C.J., Rogerson, F.M., Fosang, A.J. & Handley, C.J. Distinguishing aggrecan loss from aggrecan proteolysis in ADAMTS-4 and ADAMTS-5 single and double deficient mice. J. Biol. Chem. 282, 37420–37428 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Little, C.B. et al. Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. J. Clin. Invest. 117, 1627–1636 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Little, C.B. et al. Matrix metalloproteinases are not essential for aggrecan turnover during normal skeletal growth and development. Mol. Cell. Biol. 25, 3388–3399 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Little, C.B. et al. ADAMTS-1-knockout mice do not exhibit abnormalities in aggrecan turnover in vitro or in vivo. Arthritis Rheum. 52, 1461–1472 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Farndale, R.W., Sayers, C.A. & Barrett, A.J. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tissue Res. 9, 247–248 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Ratcliffe, A., Doherty, M., Maini, R.N. & Hardingham, T.E. Increased concentrations of proteoglycan components in the synovial fluids of patients with acute but not chronic joint disease. Ann. Rheum. Dis. 47, 826–832 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Farndale, R.W., Buttle, D.J. & Barrett, A.J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta 883, 173–177 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Hollander, A.P., Atkins, R.M., Eastwood, D.M., Dieppe, P.A. & Elson, C.J. Human cartilage is degraded by rheumatoid arthritis synovial fluid but not by recombinant cytokines in vitro. Clin. Exp. Immunol. 83, 52–57 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gregg, A.J. et al. Assessment of the catabolic effects of interleukin-1beta on proteoglycan metabolism in equine cartilage cocultured with synoviocytes. Am. J. Vet. Res. 67, 957–962 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Tortorella, M.D. et al. Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J. Biol. Chem. 275, 18566–18573 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Tortorella, M.D., Liu, R.Q., Burn, T., Newton, R.C. & Arner, E. Characterization of human aggrecanase 2 (ADAM-TS5): substrate specificity studies and comparison with aggrecanase 1 (ADAM-TS4). Matrix Biol. 21, 499–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Sandy, J.D., Thompson, V., Doege, K. & Verscharen, C. The intermediates of aggrecanase-dependent cleavage of aggrecan in rat chondrosarcoma cells treated with interleukin-1. Biochem. J. 351, 1–166 (2000).

    Article  Google Scholar 

  27. Christner, J.E., Caterson, B. & Baker, J.R. Immunological determinants of proteoglycans. Antibodies against the unsaturated oligosaccharide products of chondroitinase ABC-digested cartilage proteoglycans. J. Biol. Chem. 255, 7102–7105 (1980).

    CAS  PubMed  Google Scholar 

  28. Caterson, B., Calabro, A. & Hampton, A. In Biology of the Extracellular Matrix (eds. Wight, T. & Mecham, R.) 1–26 (Academic Press, 1987).

  29. Sandy, J.D., Gamett, D., Thompson, V. & Verscharen, C. Chondrocyte-mediated catabolism of aggrecan: aggrecanase-dependent cleavage induced by interleukin-1 or retinoic acid can be inhibited by glucosamine. Biochem. J. 335, 59–66 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Struglics, A., Larsson, S., Hansson, M. & Lohmander, L.S. Western blot quantification of aggrecan fragments in human synovial fluid indicates differences in fragment patterns between joint diseases. Osteoarthr. Cartil. 17, 497–506 (2009).

    Article  CAS  Google Scholar 

  31. Bitter, T. & Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330–334 (1962).

    Article  CAS  PubMed  Google Scholar 

  32. Björnsson, S. Simultaneous preparation and quantitation of proteoglycans by precipitation with alcian blue. Anal. Biochem. 210, 282–291 (1993).

    Article  PubMed  Google Scholar 

  33. Swearingen, C. et al. Development of a novel clinical biomarker assay to detect and quantify aggrecanase-generated aggrecan fragments in human synovial fluid, serum and urine. Osteoarthr. Cartil. 18, 1150–1158 (2010).

    Article  CAS  Google Scholar 

  34. Hughes, C.E., Caterson, B., Fosang, A.J., Roughley, P.J. & Mort, J.S. Monoclonal antibodies that specifically recognise neo-epitope sequences generated by 'aggrecanase' and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem. J. 305, 799–804 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dufield, D.R. et al. An immunoaffinity LC/MS/MS Assay for detection of endogenous aggrecan fragments in biological fluids. Use as a biomarker for aggrecanase activity and cartilage degradation. Anal. Biochem. 406, 113–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Drissi, H., Zuscik, M., Rosier, R. & O'Keefe, R. Transcriptional regulation of chondrocyte maturation: potential involvement of transcription factors in OA pathogenesis. Mol. Aspects Med. 26, 169–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Glasson, S.S. et al. Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice. Arthritis Rheum. 50, 2547–2558 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Glasson, S.S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Echtermeyer, F. et al. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med. 15, 1072–1077 (2009).

    CAS  PubMed  Google Scholar 

  40. Miyaki, S. et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 24, 1173–1185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goldring, M.B., Otero, M., Tsuchimochi, K., Ijiri, K. & Li, Y. Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis. 67 (Suppl 3), iii75–iii82 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Luyten, F.P., Tylzanowski, P. & Lories, R.J. Wnt signaling and osteoarthritis. Bone 44, 522–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Chun, J.S., Oh, H., Yang, S. & Park, M. Wnt signaling in cartilage development and degeneration. BMB Rep. 41, 485–494 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Iliopoulos, D., Malizos, K.N., Oikonomou, P. & Tsezou, A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS ONE 3, e3740 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Miyaki, S. et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 60, 2723–2730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sandell, L.J. et al. Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1beta. Osteoarthr. Cartil. 16, 1560–1571 (2008).

    Article  CAS  Google Scholar 

  47. Appleton, C.T., Pitelka, V., Henry, J. & Beier, F. Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum. 56, 1854–1868 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Dell'accio, F., De Bari, C., Eltawil, N.M., Vanhummelen, P. & Pitzalis, C. Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum. 58, 1410–1421 (2008).

    CAS  PubMed  Google Scholar 

  49. Amaral, P.P., Dinger, M.E., Mercer, T.R. & Mattick, J.S. The eukaryotic genome as an RNA machine. Science 319, 1787–1789 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Fosang, A.J., Last, K., Gardiner, P., Jackson, D.C. & Brown, L. Development of a cleavage site-specific monoclonal antibody for detecting metalloproteinase-derived aggrecan fragments: detection of fragments in human synovial fluids. Biochem. J. 310, 337–343 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mercuri, F.A. et al. Recombinant human aggrecan G1-G2 exhibits native binding properties and substrate specificity for matrix metalloproteinases and aggrecanase. J. Biol. Chem. 274, 32387–32395 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Fosang, A.J. et al. Neoepitope antibodies against MMP-cleaved and aggrecanase-cleaved aggrecan. Methods Mol. Biol. 622, 312–347 (2010).

    PubMed  Google Scholar 

  53. Lark, M.W. et al. Quantification of a matrix metalloproteinase-generated aggrecan G1 fragment using monospecific anti-peptide serum. Biochem. J. 307, 245–252 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lark, M.W. et al. Aggrecan degradation in human cartilage. Evidence for both metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J. Clin. Invest. 100, 93–106 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bayne, E.K. et al. Use of an antibody against the matrix metalloproteinase-generated aggrecan neoepitope FVDIPEN-COOH to assess the effects of stromelysin in a rabbit model of cartilage degradation. Arthritis Rheum. 38, 1400–1409 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. van Meurs, J. et al. Cleavage of aggrecan at the Asn341-Phe342 site coincides with the initiation of collagen damage in murine antigen-induced arthritis: a pivotal role for stromelysin 1 in matrix metalloproteinase activity. Arthritis Rheum. 42, 2074–2084 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Chambers, M.G. et al. Matrix metalloproteinases and aggrecanases cleave aggrecan in different zones of normal cartilage but colocalize in the development of osteoarthritic lesions in STR/ort mice. Arthritis Rheum. 44, 1455–1465 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, E.R. et al. Immunolocalization of the cleavage of the aggrecan core protein at the Asn341-Phe342 bond, as an indicator of the location of the metalloproteinases active in the lysis of the rat growth plate. Anat. Rec. 252, 117–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Janusz, M.J. et al. Detection of aggrecanase- and MMP-generated catabolic neoepitopes in the rat iodoacetate model of cartilage degeneration. Osteoarthr. Cartil. 12, 720–728 (2004).

    Article  CAS  Google Scholar 

  60. Maehara, H. et al. G1-G2 aggrecan product that can be generated by M-calpain on truncation at Ala709-Ala710 is present abundantly in human articular cartilage. J. Biochem. 141, 469–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Oshita, H. et al. Mature bovine articular cartilage contains abundant aggrecan that is C-terminally truncated at Ala719-Ala720, a site which is readily cleaved by m-calpain. Biochem. J. 382, 253–259 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Struglics, A. & Hansson, M. Calpain is involved in C-terminal truncation of human aggrecan. Biochem. J. 430, 531–538 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Chamberland, A. et al. Identification of a novel HtrA1-susceptible cleavage site in human aggrecan: evidence for the involvement of HtrA1 in aggrecan proteolysis in vivo. J. Biol. Chem. 284, 27352–27359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kadri, A. et al. Inhibition of bone resorption blunts osteoarthritis in mice with high bone remodelling. Ann. Rheum. Dis. 69, 1533–1538 (2010).

    Article  PubMed  Google Scholar 

  65. Rogerson, F.M., Chung, Y.M., Deutscher, M.E., Last, K. & Fosang, A.J. Cytokine-induced increases in ADAMTS-4 mRNA expression do not lead to increased aggrecanase activity in ADAMTS-5-deficient mice. Arthritis Rheum. 62, 3365–3373 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Ranstam, J. Reporting laboratory experiments. Osteoarthr. Cartil. 18, 3–4 (2010).

    Article  CAS  Google Scholar 

  67. Arner, E.C., Hughes, C.E., Decicco, C.P., Caterson, B. & Tortorella, M.D. Cytokine-induced cartilage proteoglycan degradation is mediated by aggrecanase. Osteoarthr. Cartil. 6, 214–228 (1998).

    Article  CAS  Google Scholar 

  68. Gendron, C., Kashiwagi, M., Hughes, C., Caterson, B. & Nagase, H. TIMP-3 inhibits aggrecanase-mediated glycosaminoglycan release from cartilage explants stimulated by catabolic factors. FEBS Lett. 555, 431–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Little, C.B. et al. Aggrecanase versus matrix metalloproteinases in the catabolism of the interglobular domain of aggrecan in vitro. Biochem. J. 344, 62–68 (1999).

    Google Scholar 

  70. Frank, J.E., Thompson, V.P., Brown, M.P. & Sandy, J.D. Removal of O-linked and N-linked oligosaccharides is required for optimum detection of NITEGE neoepitope on ADAMTS4-digested fetal aggrecans: implications for specific N-linked glycan-dependent aggrecanolysis at Glu373-Ala374. Osteoarthr. Cartil. 17, 777–781 (2009).

    Article  CAS  Google Scholar 

  71. Barry, F.P., Rosenberg, L.C., Gaw, J.U., Koob, T.J. & Neame, P.J. N- and O-linked keratan sulfate on the hyaluronan binding region of aggrecan from mature and immature bovine cartilage. J. Biol. Chem. 270, 20516–20524 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Struglics, A. et al. Human osteoarthritis synovial fluid and joint cartilage contain both aggrecanase- and matrix metalloproteinase-generated aggrecan fragments. Osteoarthr. Cartil. 14, 101–113 (2006).

    Article  CAS  Google Scholar 

  73. Lark, M.W. et al. Cell-mediated catabolism of aggrecan. Evidence that cleavage at the 'aggrecanase' site (Glu373-Ala374) is a primary event in proteolysis of the interglobular domain. J. Biol. Chem. 270, 2550–2556 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Sztrolovics, R., Alini, M., Roughley, P.J. & Mort, J.S. Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem. J. 326, 235–241 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bayliss, M.T., Hutton, S., Hayward, J. & Maciewicz, R.A. Distribution of aggrecanase (ADAMts 4/5) cleavage products in normal and osteoarthritic human articular cartilage: the influence of age, topography and zone of tissue. Osteoarthr. Cartil. 9, 553–560 (2001).

    Article  CAS  Google Scholar 

  76. Struglics, A., Larsson, S. & Lohmander, L.S. Estimation of the identity of proteolytic aggrecan fragments using PAGE migration and Western immunoblot. Osteoarthr. Cartil. 14, 898–905 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the mouse husbandry support provided by L. Tutolo and the Disease Models Unit of the Murdoch Childrens Research Institute. We thank E. Arner and M. Tortorella (Pfizer) for the anti-AGEGP antibody. The work was funded by the National Health and Medical Research Council (Australia).

Author information

Authors and Affiliations

Authors

Contributions

A.J.F. conceived the work and designed the experiments. H.S. and A.J.F. wrote the paper and the experiments were done by S.B.G. and K.L. C.B.L. established the original protocol for mouse cartilage culture from which the present protocols have evolved. F.M.R. further optimized the protocol for western blot analysis. All authors contributed to the editing of the final manuscript.

Corresponding author

Correspondence to Amanda J Fosang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1: Full length view of the western blots shown in figure 5.

The high molecular weight bands visible in panel g are non-specific. The specific VTEGE fragment has Mr 65 kDa. The non-specific bands (>100 kDa) are unlikely to be keratin. On the occasions we have seen a non-specific keratin band it has been 50 kDa. (EPS 8788 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanton, H., Golub, S., Rogerson, F. et al. Investigating ADAMTS-mediated aggrecanolysis in mouse cartilage. Nat Protoc 6, 388–404 (2011). https://doi.org/10.1038/nprot.2010.179

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.179

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing