Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Ambient molecular imaging by desorption electrospray ionization mass spectrometry

Abstract

Desorption electrospray ionization (DESI) allows the direct analysis of ordinary objects or pre-processed samples under ambient conditions. Among other applications, DESI is used to identify and record spatial distributions of lipids and drug molecules in biological tissue sections. This technique does not require sample preparation other than production of microtome tissue slices and does not involve the use of ionization matrices. This greatly simplifies the procedure and prevents the redistribution of analytes during matrix deposition. Images are obtained by continuously moving the sample relative to the DESI sprayer and the inlet of the mass spectrometer. The timing of the protocol depends on the size of the surface to be analyzed and on the desired resolution. Analysis of organ tissue slices at 250 μm resolution typically takes between 30 min and 2 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the strategy adopted in microprobe imaging experiments.
Figure 2
Figure 3
Figure 4
Figure 5: Effect of the solvent flow-rate on the DESI spot size and sample distribution map using a water sensitive paper.
Figure 6: DESI-MS images of a sagittal section of rat brain tissue.

Similar content being viewed by others

References

  1. Cooks, R.G., Ouyang, Z., Takats, Z. & Wiseman, J.M. Ambient mass spectrometry. Science 311, 1566–1570 (2006).

    Article  CAS  Google Scholar 

  2. Takats, Z., Wiseman, J.M., Gologan, B. & Cooks, R.G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471–473 (2004).

    Article  CAS  Google Scholar 

  3. Takats, Z., Gologan, B., Wiseman, J.M. & Cooks, R.G. Patent application number 20050230635. Purdue Research Foundation (West Lafayette, IN, USA, 2003).

  4. Cody, R.B., Laramee, J.A. & Durst, H.D. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77, 2297–2302 (2005).

    Article  CAS  Google Scholar 

  5. Takats, Z., Cotte-Rodriguez, I., Talaty, N., Chen, H.W. & Cooks, R.G. Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry. Chem. Commun. 15, 1950–1952 (2005).

    Article  Google Scholar 

  6. Shiea, J. et al. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun. Mass Spectrom. 19, 3701–3704 (2005).

    Article  CAS  Google Scholar 

  7. Nemes, P. & Vertes, A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79, 8098–8106 (2007).

    Article  CAS  Google Scholar 

  8. McEwen, C.N., McKay, R.G. & Larsen, B.S. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal. Chem. 77, 7826–7831 (2005).

    Article  CAS  Google Scholar 

  9. Laiko, V.V., Baldwin, M.A. & Burlingame, A.L. Atmospheric pressure matrix assisted laser desorption/ionization mass spectrometry. Anal. Chem. 72, 652–657 (2000).

    Article  CAS  Google Scholar 

  10. Sampson, J.S., Hawkridge, A.M. & Muddiman, D.C. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electropsray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 17, 1712–1716 (2006).

    Article  CAS  Google Scholar 

  11. Cotte-Rodriguez, I., Takats, Z., Talaty, N., Chen, H.W. & Cooks, R.G. Desorption electrospray ionization of explosives on surfaces: sensitivity and selectivity enhancement by reactive desorption electrospray ionization. Anal. Chem. 77, 6755–6764 (2005).

    Article  CAS  Google Scholar 

  12. Justes, D.R., Talaty, N., Cotte-Rodriguez, I. & Cooks, R.G. Detection of explosives on skin using ambient ionization mass spectrometry. Chem. Commun. 21, 2142–2144 (2007).

    Article  Google Scholar 

  13. Wiseman, J.M., Ifa, D.R., Song, Q. & Cooks, R.G. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew Chem. Int. Ed. Engl. 45, 7188–7192 (2006).

    Article  CAS  Google Scholar 

  14. Weston, D.J., Bateman, R., Wilson, I.D., Wood, T.R. & Creaser, C.S. Direct analysis of pharmaceutical drug formulations using ion mobility spectrometry/quadrupole-time-of-flight mass spectrometry combined with desorption electrospray ionization. Anal. Chem. 77, 7572–7580 (2005).

    Article  CAS  Google Scholar 

  15. Rodriguez-Cruz, S.E. Rapid analysis of controlled substances using desorption electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 20, 53–60 (2006).

    Article  CAS  Google Scholar 

  16. Kauppila, T.J., Talaty, N., Kuuranne, T., Kostiainen, R. & Cooks, R.G. Rapid analysis of metabolites and drugs of abuse from urine samples by desorption electrospray ionization-mass spectrometry. Analyst 132, 868–875 (2007).

    Article  CAS  Google Scholar 

  17. Morlock, G. & Ueda, Y. New coupling of planar chromatography with direct analysis in real time mass spectrometry. J. Chromatogr. A 1143, 273–251 (2007).

    Article  Google Scholar 

  18. Van Berkel, G.J., Ford, M.J. & Deibel, M.A. Thin-layer chromatography and mass spectrometry coupled using desorption electrospray ionization. Anal. Chem. 77, 1207–1215 (2005).

    Article  CAS  Google Scholar 

  19. Mulligan, C.C., MacMillan, DK., Noll, R.J. & Cooks, R.G. Fast analysis of high energy compounds and agricultural chemicals in water with desorption electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 21, 3729–3736 (2007).

    Article  CAS  Google Scholar 

  20. Myung, S. et al. Coupling desorption electrospray ionization with ion mobility/mass spectrometry for analysis of protein structure: Evidence for desorption of folded and denatured states. J. Phys. Chem. B 110, 5045–5051 (2006).

    Article  CAS  Google Scholar 

  21. Hu, Q.Z., Talaty, N., Noll, R.J. & Cooks, R.G. Desorption electrospray ionization using an Orbitrap mass spectrometer: exact mass measurements on drugs and peptides. Rapid Commun. Mass Spectrom. 20, 3403–3408 (2006).

    Article  CAS  Google Scholar 

  22. Takats, Z., Wiseman, J.M. & Cooks, R.G. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J. Mass Spectrom. 40, 1261–1275 (2005).

    Article  CAS  Google Scholar 

  23. Ifa, D.R., Manicke, N.E., Rusine, A.L. & Cooks, R.G. Quantitative analysis of small molecules by desorption electrospray ionization (DESI) mass spectrometry from PTFE surfaces. Rapid Commun. Mass Spectrom. 22, 503–510 (2008).

    Article  CAS  Google Scholar 

  24. Ifa, D.R., Gumaelius, L.M., Eberlin, L.S., Manicke, N.E. & Cooks, R.G. Forensic analysis of inks by imaging desorption electrospray ionization (DESI) mass spectrometry. Analyst 132, 461–467 (2007).

    Article  CAS  Google Scholar 

  25. Van Berkel, G.J. & Kertesz, V. Automated sampling and imaging of analytes separated on thin-layer chromatography plates using desorption electrospray ionization mass spectrometry. Anal. Chem. 78, 4938–4944 (2006).

    Article  CAS  Google Scholar 

  26. Wiseman, J.M., Puolitaival, S.M., Takats, Z., Cooks, R.G. & Caprioli, R.M. Mass spectrometric profiling of intact biological tissue by using desorption electrospray ionization. Angew Chem. Int. Ed. Engl. 44, 7094–7097 (2005).

    Article  CAS  Google Scholar 

  27. McDonnell, L.A. & Heeren, R.M.A. Imaging mass spectrometry. Mass Spectrom. Rev. 26, 606–643 (2007).

    Article  CAS  Google Scholar 

  28. Touboul, D., Kollmer, F., Niehuis, E., Brunelle, A. & Laprevote, O. Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J. Am. Soc. Mass Spectrom. 16, 1608–1618 (2005).

    Article  CAS  Google Scholar 

  29. Touboul, D. et al. Tissue molecular ion imaging by gold cluster ion bombardment. Anal. Chem. 76, 1550–1559 (2004).

    Article  CAS  Google Scholar 

  30. Stoeckli, M., Chaurand, P., Hallahan, D.E. & Caprioli, R.M. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat. Med. 7, 493–496 (2001).

    Article  CAS  Google Scholar 

  31. Chaurand, P., Schwartz, S.A., Reyzer, M.L. & Caprioli, R.M. Imaging mass spectrometry: principles and potentials. Toxicol. Pathol. 33, 92–101 (2005).

    Article  CAS  Google Scholar 

  32. Khatib-Shahidi, S., Andersson, M., Herman, J.L., Gillespie, T.A. & Caprioli, R.M. Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal. Chem. 78, 6448–6456 (2006).

    Article  CAS  Google Scholar 

  33. Hsieh, Y., Chen, J. & Korfmacher, W.A. Mapping pharmaceuticals in tissues using MALDI imaging mass spectrometry. J. Pharmacol. Toxicol. Methods 55, 193–200 (2007).

    Article  CAS  Google Scholar 

  34. Luxembourg, S.L., Mize, T.H., McDonnell, L.A. & Heeren, R.M.A. High-spatial resolution mass spectrometric imaging of peptide and protein distributions on a surface. Anal. Chem. 76, 5339–5344 (2004).

    Article  CAS  Google Scholar 

  35. Ifa, D.R., Wiseman, J.M., Song, Q. & Cooks, R.G. Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI). Int. J. Mass Spectrom. 259, 8–15 (2007).

    Article  CAS  Google Scholar 

  36. Ostrowski, S.G., Van Bell, C.T., Winograd, N. & Ewing, A.G. Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science 305, 71–73 (2004).

    Article  CAS  Google Scholar 

  37. McDonnell, L.A. et al. Subcellular imaging mass spectrometry of brain tissue. J. Mass Spectrom. 40, 160–168 (2005).

    Article  CAS  Google Scholar 

  38. Todd, P.J., Schaaff, T.G., Chaurand, P. & Caprioli, R.M. Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. J. Mass Spectrom. 36, 355–369 (2001).

    Article  CAS  Google Scholar 

  39. Schueler, B., Sander, P. & Reed, D.A. A Time-of-flight secondary ion-microscope. Vacuum 41, 1661–1664 (1990).

    Article  CAS  Google Scholar 

  40. Northen, T.R. et al. Clathrate nanostructures for mass spectrometry. Nature 449, 1033–1037 (2007).

    Article  CAS  Google Scholar 

  41. Venter, A. & Cooks, R.G. Desorption electrospray ionization in a small tight pressure enclosure. Anal. Chem. 79, 6398–6403 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Office of Naval Research (Research Tools program, grant N000140510454) from which this work was supported. The authors gratefully acknowledge the assistance of Candice Kissinger and Simon Katner of Bioanalytical Systems Inc. (West Lafayette, IN) for graciously providing animal tissues and performing the surgical and dosing procedures in accordance with the local animal care and use guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Graham Cooks.

Ethics declarations

Competing interests

Dr Justin Wiseman, formerly of Purdue University, is now employed by PROSOLIA Inc., Indianapolis, a company which sells DESI ion sources. None of the other authors have competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiseman, J., Ifa, D., Venter, A. et al. Ambient molecular imaging by desorption electrospray ionization mass spectrometry. Nat Protoc 3, 517–524 (2008). https://doi.org/10.1038/nprot.2008.11

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.11

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing