Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Mass spectrometry using electrospray ionization

Abstract

Applying a high voltage to a liquid passing through a capillary disintegrates the liquid meniscus to generate a fine spray of charged droplets. As the droplets evaporate, polar molecules dissolved in the liquid are ionized and brought into the gas phase. This phenomenon is commonly known as electrospray ionization (ESI). The gaseous ions can be analysed using mass spectrometry (MS) to determine their molecular masses and chemical structures. Polar analytes — including low-molecular-weight species such as amino acids, peptides, nucleotides and synthetic chemicals; macromolecules, for example, synthetic and natural polymers; and nanoscale particles, for instance, viruses — are ionizable using ESI. In the past three decades, ESI-MS has evolved into a powerful instrumental approach useful to (bio)chemists in a wide range of applications. Several different variants have been developed to extend its functionality. For obtaining chemical and structural information on macromolecules, ESI-MS is complementary to fluorescence spectroscopy, nuclear magnetic resonance spectroscopy, X-ray crystallography and cryo-electron microscopy. This Primer discusses the ESI setup, mechanism and variants. It further introduces sample and instrument-related factors that affect the ionization process, applications and current research, as well as giving a future perspective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A typical electrospray ionization setup.
Fig. 2: High-speed imaging of the disintegration of a levitated droplet charged to the Rayleigh’s limit.
Fig. 3: Electrospray ionization-mass spectrometry system.
Fig. 4: Graphic illustrating main variants of electrospray ionization.
Fig. 5: Matrix effect observed in electrospray ionization-mass spectrometry.
Fig. 6: Representative electrospray ionization mass spectra of different compounds acquired using low-resolution and high-resolution mass spectrometers.
Fig. 7: Proteomic analysis.

Similar content being viewed by others

References

  1. Yamashita, M. & Fenn, J. B. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 88, 4451–4459 (1984).

    Article  Google Scholar 

  2. Alexandrov, M. L. et al. Extraction of ions from solutions under atmospheric pressure: a method for mass spectrometric analysis of bioorganic compounds. Doklady Akad. Nauk. SSSR 277, 379–383 (1984).

    Google Scholar 

  3. Meng, C. K., Mann, M. & Fenn, J. B. Of protons or proteins. Z. Phys. D 10, 361–368 (1988). Regarded as the first report on using electrospray for ionizing protein molecules for mass spectrometric analysis.

    Article  ADS  Google Scholar 

  4. Wong, S. F., Meng, C. K. & Fenn, J. B. Multiple charging in electrospray ionization of poly(ethylene glycols). J. Phys. Chem. 92, 546–550 (1988).

    Article  Google Scholar 

  5. Mann, M., Meng, C. K. & Fenn, J. B. Interpreting mass spectra of multiply charged ions. Anal. Chem. 61, 1702–1708 (1989).

    Article  Google Scholar 

  6. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989).

    Article  ADS  Google Scholar 

  7. Fenn, J. B. Electrospray wings for molecular elephants (nobel lecture). Angew. Chem. Int. Ed. 42, 3871–3894 (2003).

    Article  Google Scholar 

  8. Wilm, M. S. & Mann, M. Electrospray and Taylor-cone theory, Dole’s beam of macromolecules at last? Int. J. Mass Spectrom. Ion Process. 136, 167–180 (1994). Regarded as the first description of nano-ESI and the theory behind improved efficiency of ESI at lower flow rates.

    Article  ADS  Google Scholar 

  9. Wilm, M. & Mann, M. Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68, 1–8 (1996).

    Article  Google Scholar 

  10. Wilm, M. Synthesis of extended, self-assembled biological membranes containing membrane proteins from gas phase. Preprint at bioRxiv https://doi.org/10.1101/661215 (2022).

    Article  Google Scholar 

  11. Rayleigh, L. XX. On the equilibrium of liquid conducting masses charged with electricity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 14, 184–186 (1882).

    Article  Google Scholar 

  12. Zeleny, J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys. Rev. 3, 69–91 (1914). Regarded as the first report on the phenomenon of electrospray.

    Article  ADS  Google Scholar 

  13. Zeleny, J. On the conditions of instability of liquid drops, with applications to the electrical discharge from liquid points. Proc. Camb. Phil. Soc. 18, 71–83 (1914).

    Google Scholar 

  14. Taylor, G. I. Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280, 383–397 (1964). Regarded as the first description of the physical processes causing electrospray.

    Article  ADS  MATH  Google Scholar 

  15. Gomez, A. & Tang, K. Charge and fission of droplets in electrostatic sprays. Phys. Fluids 6, 404–414 (1994).

    Article  ADS  Google Scholar 

  16. Kebarle, P. & Peschke, M. On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Anal. Chim. Acta 406, 11–35 (2000).

    Article  Google Scholar 

  17. Konermann, L. A simple model for the disintegration of highly charged solvent droplets during electrospray ionization. J. Am. Soc. Mass Spectrom. 20, 496–506 (2009).

    Article  Google Scholar 

  18. Hager, D. B., Dovichi, N. J., Klassen, J. & Kebarle, P. Droplet electrospray mass spectrometry. Anal. Chem. 66, 3944–3949 (1994).

    Article  Google Scholar 

  19. Hahne, H. et al. DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nat. Methods 10, 989–991 (2013).

    Article  Google Scholar 

  20. Konermann, L., Ahadi, E., Rodriguez, A. D. & Vahidi, S. Unraveling the mechanism of electrospray ionization. Anal. Chem. 85, 2–9 (2013).

    Article  Google Scholar 

  21. Iribarne, J. V. & Thomson, B. A. On the evaporation of small ions from charged droplets. J. Chem. Phys. 64, 2287–2294 (1976).

    Article  ADS  Google Scholar 

  22. Thomson, B. A. & Iribarne, J. V. Field induced ion evaporation from liquid surfaces at atmospheric pressure. J. Chem. Phys. 71, 4451–4463 (1979).

    Article  ADS  Google Scholar 

  23. Winger, B. E., Light-Wahl, K. J., Loo, R. R. O., Udseth, H. R. & Smith, R. D. Observation and implications of high mass-to-charge ratio ions from electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 4, 536–545 (1993).

    Article  Google Scholar 

  24. Fernandez de la Mora, J. Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Anal. Chim. Acta 406, 93–104 (2000).

    Article  Google Scholar 

  25. Konermann, L., Rodriguez, A. D. & Liu, J. On the formation of highly charged gaseous ions from unfolded proteins by electrospray ionization. Anal. Chem. 84, 6798–6804 (2012).

    Article  Google Scholar 

  26. Aitken, A. in Principles and Techniques of Biochemistry and Molecular Biology (eds Wilson, K. & Walker, J.) (Cambridge Univ. Press, 2010).

  27. Vaidyanathan, S., Kell, D. B. & Goodacre, R. Flow-injection electrospray ionization mass spectrometry of crude cell extracts for high-throughput bacterial identification. J. Am. Soc. Mass Spectrom. 13, 118–128 (2002).

    Article  Google Scholar 

  28. Giné, M. F. in Advances in Flow Analysis (ed. Trojanowicz, M.) 545–574 (Wiley, 2008).

  29. McMaster, M. C. HPLC: A Practical User’s Guide (Wiley, 2007).

  30. Olivares, J. A., Nguyen, N. T., Yonker, C. R. & Smith, R. D. On-line mass spectrometric detection for capillary zone electrophoresis. Anal. Chem. 59, 1230–1232 (1987).

    Article  Google Scholar 

  31. Risley, J. M., de Jong, C. A. G. & Chen, D. D. Y. in Capillary Electrophoresis–Mass Spectrometry (CE-MS): Principles and Applications (ed. de Jong, G.) 7–39 (Wiley, 2016).

  32. Manisali, I., Chen, D. D. Y. & Schneider, B. B. Electrospray ionization source geometry for mass spectrometry: past, present, and future. Trends Anal. Chem. 25, 243–256 (2006). A detailed account on different ESI source geometries.

    Article  Google Scholar 

  33. Stahnke, H., Kittlaus, S., Kempe, G., Hemmerling, C. & Alder, L. The influence of electrospray ion source design on matrix effects. J. Mass Spectrom. 47, 875–884 (2012).

    Article  ADS  Google Scholar 

  34. Bruins, A. P. in Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Practicalities, and Biological Applications (ed. Cole, R. B.) 123–146 (Wiley, 2010).

  35. de Hoffmann, E. & Stroobant, V. Mass Spectrometry: Principles and Applications (Wiley, 2007). A popular textbook on MS that describes different kinds of ion sources, mass analysers, detectors, methods and ways to interpret mass spectra.

  36. Urban, P. L., Chen, Y.-C. & Wang, Y.-S. Time-Resolved Mass Spectrometry: From Concept to Applications (Wiley, 2016).

  37. Todd, J. F. J. Recommendations for nomenclature and symbolism for mass spectroscopy (including an appendix of terms used in vacuum technology). (Recommendations 1991). Pure Appl. Chem. 63, 1541–1566 (1991).

    Article  Google Scholar 

  38. Koppenaal, D. W. et al. MS detectors. Anal. Chem. 77, 418A–427A (2005).

    Article  Google Scholar 

  39. Hu, Q. et al. The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40, 430–443 (2005).

    Article  ADS  Google Scholar 

  40. Roboz, J. in The Encyclopedia of Mass Spectrometry, Vol. 9: Historical Perspectives, Part A: The Development of Mass Spectrometry (eds Gross, M. L. & Caprioli, R. M.) 183–188 (Elsevier, 2016).

  41. Wang, R. et al. The role of nebulizer gas flow in electrosonic spray ionization (ESSI). J. Am. Soc. Mass Spectrom. 22, 1234–1241 (2011).

    Article  ADS  Google Scholar 

  42. Herrero, M. et al. Pressurized liquid extraction–capillary electrophoresis–mass spectrometry for the analysis of polar antioxidants in rosemary extracts. J. Chromatogr. A 1084, 54–62 (2005).

    Article  Google Scholar 

  43. Kruve, A., Herodes, K. & Leito, I. Optimization of electrospray interface and quadrupole ion trap mass spectrometer parameters in pesticide liquid chromatography/electrospray ionization mass spectrometry analysis. Rapid Commun. Mass. Spectrom. 24, 919–926 (2010).

    Article  ADS  Google Scholar 

  44. Schmidt, A., Karas, M. & Dülcks, T. Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? J. Am. Soc. Mass Spectrom. 14, 492–500 (2003).

    Article  Google Scholar 

  45. Rovelli, G. et al. A critical analysis of electrospray techniques for the determination of accelerated rates and mechanisms of chemical reactions in droplets. Chem. Sci. 11, 13026–13043 (2020).

    Article  Google Scholar 

  46. Bahr, U., Pfenninger, A., Karas, M. & Stahl, B. High-sensitivity analysis of neutral underivatized oligosaccharides by nanoelectrospray mass spectrometry. Anal. Chem. 69, 4530–4535 (1997).

    Article  Google Scholar 

  47. Juraschek, R., Dülcks, T. & Karas, M. Nanoelectrospray — more than just a minimized-flow electrospray ionization source. J. Am. Soc. Mass Spectrom. 10, 300–308 (1999).

    Article  Google Scholar 

  48. Prabhu, G. R. D., Ponnusamy, V. K., Witek, H. A. & Urban, P. L. Sample flow rate scan in electrospray ionization mass spectrometry reveals alterations in protein charge state distribution. Anal. Chem. 92, 13042–13049 (2020).

    Article  Google Scholar 

  49. Covey, T. in Biochemical and Biotechnological Applications of Electrospray Ionization Mass Spectrometry (ed. Snyder, A. P.) 21–59 (American Chemical Society, 1996).

  50. Marginean, I. et al. Analytical characterization of the electrospray ion source in the nanoflow regime. Anal. Chem. 80, 6573–6579 (2008).

    Article  Google Scholar 

  51. Prabhu, G. R. D., Witek, H. A. & Urban, P. L. Programmable flow rate scanner for evaluating detector sensitivity regime. Sens. Actuators B Chem. 282, 992–998 (2019).

    Article  Google Scholar 

  52. Reschke, B. R. & Timperman, A. T. A study of electrospray ionization emitters with differing geometries with respect to flow rate and electrospray voltage. J. Am. Soc. Mass Spectrom. 22, 2115–2124 (2011).

    Article  ADS  Google Scholar 

  53. Xia, Z. & Williams, E. R. Effect of droplet lifetime on where ions are formed in electrospray ionization. Analyst 144, 237–248 (2019).

    Article  ADS  Google Scholar 

  54. Mark, L. P., Gill, M. C., Mahut, M. & Derrick, P. J. Dual nano-electrospray for probing solution interactions and fast reactions of complex biomolecules. Eur. J. Mass Spectrom. 18, 439–446 (2012).

    Article  Google Scholar 

  55. Mortensen, D. N. & Williams, E. R. Theta-glass capillaries in electrospray ionization: rapid mixing and short droplet lifetimes. Anal. Chem. 86, 9315–9321 (2014).

    Article  Google Scholar 

  56. Mortensen, D. N. & Williams, E. R. Investigating protein folding and unfolding in electrospray nanodrops upon rapid mixing using theta-glass emitters. Anal. Chem. 87, 1281–1287 (2015).

    Article  Google Scholar 

  57. Mortensen, D. N. & Williams, E. R. Ultrafast (1 μs) mixing and fast protein folding in nanodrops monitored by mass spectrometry. J. Am. Chem. Soc. 138, 3453–3460 (2016).

    Article  Google Scholar 

  58. Mortensen, D. N. & Williams, E. R. Microsecond and nanosecond polyproline II helix formation in aqueous nanodrops measured by mass spectrometry. Chem. Commun. 52, 12218–12221 (2016).

    Article  Google Scholar 

  59. Su, S., Gibson, G. T. T., Mugo, S. M., Marecak, D. M. & Oleschuk, R. D. Microstructured photonic fibers as multichannel electrospray emitters. Anal. Chem. 81, 7281–7287 (2009).

    Article  Google Scholar 

  60. Gibson, G. T. T., Wright, R. D. & Oleschuk, R. D. Multiple electrosprays generated from a single polycarbonate microstructured fibre. J. Mass Spectrom. 47, 271–276 (2012).

    Article  ADS  Google Scholar 

  61. Oleschuk, R. D., Gibson, G. & Wright, R. Multi-channel electrospray emitter. US patent US8373116B2 (2013).

  62. Fu, Y. et al. Polymer micronozzle array for multiple electrosprays produced by templated synthesis and etching of microstructured fibers. Anal. Chem. 87, 747–753 (2015).

    Article  Google Scholar 

  63. Fu, Y. Development of Multi-nozzle Emitters for Nano-ESI Mass Spectrometry and Fabrication of 1D Polymer Structures Using Microstructured Fibers as Templates. Doctoral thesis, Queen’s Univ. (2015).

  64. Groper, E. R. et al. Fabrication and characterization of laser-heated, multiplexed electrospray emitter. Analyst 146, 2834–2841 (2021).

    Article  ADS  Google Scholar 

  65. Dastourani, H., Jahannama, M. R. & Eslami-Majd, A. A physical insight into electrospray process in cone-jet mode: role of operating parameters. Int. J. Heat Fluid Flow 70, 315–335 (2018).

    Article  Google Scholar 

  66. Zong, H. et al. Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Mater. Sci. Eng. C 92, 1075–1091 (2018).

    Article  Google Scholar 

  67. Cloupeau, M. & Prunet-Foch, B. Electrostatic spraying of liquids in cone-jet mode. J. Electrostat. 22, 135–159 (1989).

    Article  Google Scholar 

  68. Cloupeau, M. & Prunet-Foch, B. Electrohydrodynamic spraying functioning modes: a critical review. J. Aerosol Sci. 25, 1021–1036 (1994).

    Article  ADS  Google Scholar 

  69. Rosell-Llompart, J., Grifoll, J. & Loscertales, I. G. Electrosprays in the cone-jet mode: from Taylor cone formation to spray development. J. Aerosol Sci. 125, 2–31 (2018).

    Article  ADS  Google Scholar 

  70. Joffre, G.-H. & Cloupeau, M. Characteristic forms of electrified menisci emitting charges. J. Electrostat. 18, 147–161 (1986).

    Article  Google Scholar 

  71. Marginean, I. et al. Selection of the optimum electrospray voltage for gradient elution LC–MS measurements. J. Am. Soc. Mass Spectrom. 20, 682–688 (2009).

    Article  Google Scholar 

  72. Gan, Y. et al. A comparative study on droplet characteristics and specific charge of ethanol in two small-scale electrospray systems. Sci. Rep. 9, 18791 (2019).

    Article  ADS  Google Scholar 

  73. Liigand, P. et al. Think negative: finding the best electrospray ionization/MS mode for your analyte. Anal. Chem. 89, 5665–5668 (2017).

    Article  Google Scholar 

  74. Oss, M., Kruve, A., Herodes, K. & Leito, I. Electrospray ionization efficiency scale of organic compounds. Anal. Chem. 82, 2865–2872 (2010).

    Article  Google Scholar 

  75. Kruve, A., Kaupmees, K., Liigand, J. & Leito, I. Negative electrospray ionization via deprotonation: predicting the ionization efficiency. Anal. Chem. 86, 4822–4830 (2014).

    Article  Google Scholar 

  76. Cech, N. B. & Enke, C. G. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 20, 362–387 (2001).

    Article  ADS  Google Scholar 

  77. Tang, K. & Gomez, A. On the structure of an electrostatic spray of monodisperse droplets. Phys. Fluids 6, 2317–2332 (1994).

    Article  ADS  Google Scholar 

  78. Tang, K. & Smith, R. D. Physical/chemical separations in the break-up of highly charged droplets from electrosprays. J. Am. Soc. Mass Spectrom. 12, 343–347 (2001).

    Article  ADS  Google Scholar 

  79. Wortmann, A. et al. Shrinking droplets in electrospray ionization and their influence on chemical equilibria. J. Am. Soc. Mass Spectrom. 18, 385–393 (2007).

    Article  Google Scholar 

  80. Wei, Z., Li, Y., Cooks, R. G. & Yan, X. Accelerated reaction kinetics in microdroplets: overview and recent developments. Ann. Rev. Phys. Chem. 71, 31–51 (2020).

    Article  ADS  Google Scholar 

  81. Soleilhac, A., Dagany, X., Dugourd, P., Girod, M. & Antoine, R. Correlating droplet size with temperature changes in electrospray source by optical methods. Anal. Chem. 87, 8210–8217 (2015).

    Article  Google Scholar 

  82. Mirza, U. A. & Chait, B. T. Do proteins denature during droplet evolution in electrospray ionization? Int. J. Mass Spectrom. Ion Process. 162, 173–181 (1997).

    Article  ADS  Google Scholar 

  83. Veenstra, T. D., Tomlinson, A. J., Benson, L., Kumar, R. & Naylor, S. Low temperature aqueous electrospray ionization mass spectrometry of noncovalent complexes. J. Am. Soc. Mass Spectrom. 9, 580–584 (1998).

    Article  ADS  Google Scholar 

  84. El-Baba, T. J. et al. Melting proteins: evidence for multiple stable structures upon thermal denaturation of native ubiquitin from ion mobility spectrometry-mass spectrometry measurements. J. Am. Chem. Soc. 139, 6306–6309 (2017).

    Article  Google Scholar 

  85. Marchand, A., Rosu, F., Zenobi, R. & Gabelica, V. Thermal denaturation of DNA G-quadruplexes and their complexes with ligands: thermodynamic analysis of the multiple states revealed by mass spectrometry. J. Am. Chem. Soc. 140, 12553–12565 (2018).

    Article  Google Scholar 

  86. Köhler, M. et al. Temperature-controlled electrospray ionization mass spectrometry as a tool to study collagen homo- and heterotrimers. Chem. Sci. 10, 9829–9835 (2019).

    Article  Google Scholar 

  87. Marchand, A., Czar, M. F., Eggel, E. N., Kaeslin, J. & Zenobi, R. Studying biomolecular folding and binding using temperature-jump mass spectrometry. Nat. Commun. 11, 566 (2020).

    Article  ADS  Google Scholar 

  88. McCabe, J. W. et al. Variable-temperature electrospray ionization for temperature-dependent folding/refolding reactions of proteins and ligand binding. Anal. Chem. 93, 6924–6931 (2021).

    Article  Google Scholar 

  89. El-Baba, T. J. et al. Thermal analysis of a mixture of ribosomal proteins by vT-ESI-MS: toward a parallel approach for characterizing the Stabilitome. Anal. Chem. 93, 8484–8492 (2021).

    Article  Google Scholar 

  90. Kirshenbaum, N., Michaelevski, I. & Sharon, M. Analyzing large protein complexes by structural mass spectrometry. J. Vis. Exp. 40, e1954 (2010).

    Google Scholar 

  91. Jordan, J. S., Xia, Z. & Williams, E. R. Tips on making tiny tips: secrets to submicron nanoelectrospray emitters. J. Am. Soc. Mass Spectrom. 33, 607–611 (2022). A useful guide on fabricating submicron emitters for nano-ESI.

    Article  Google Scholar 

  92. Kebarle, P. & Tang, L. From ions in solution to ions in the gas phase. Anal. Chem. 65, 972A–986A (1993).

    Google Scholar 

  93. Tang, L. & Kebarle, P. Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution. Anal. Chem. 65, 3654–3668 (1993).

    Article  Google Scholar 

  94. Davidson, K. L., Oberreit, D. R., Hogan, C. J. Jr & Bush, M. F. Nonspecific aggregation in native electrokinetic nanoelectrospray ionization. Int. J. Mass Spectrom. 420, 35–42 (2017).

    Article  Google Scholar 

  95. Susa, A. C. & Williams, E. R. Native mass spectrometry of proteins and protein complexes from non-volatile buffers that mimic the intracellular environment. Anal. Chem. 89, 3116–3122 (2017).

    Article  Google Scholar 

  96. Smith, R. D., Shen, Y. & Tang, K. Ultrasensitive and quantitative analyses from combined separations−mass spectrometry for the characterization of proteomes. Acc. Chem. Res. 37, 269–278 (2004).

    Article  Google Scholar 

  97. Takáts, Z., Wiseman, J. M., Gologan, B. & Cooks, R. G. Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion−molecule reactions at atmospheric pressure. Anal. Chem. 76, 4050–4058 (2004). Regarded as the first report on ESSI.

    Article  Google Scholar 

  98. Nasiri, A. et al. Overview, consequences, and strategies for overcoming matrix effects in LC–MS analysis: a critical review. Analyst 146, 6049–6063 (2021).

    Article  ADS  Google Scholar 

  99. Chen, H., Venter, A. & Cooks, R. G. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem. Commun. https://doi.org/10.1039/b602614a (2006). Regarded as the first report on EESI.

    Article  Google Scholar 

  100. Takáts, Z., Wiseman, J. M., Gologan, B. & Cooks, R. G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471–473 (2004). Regarded as the first report on DESI.

    Article  ADS  Google Scholar 

  101. Nefliu, M., Venter, A. & Cooks, R. G. Desorption electrospray ionization and electrosonic spray ionization for solid- and solution-phase analysis of industrial polymers. Chem. Commun. https://doi.org/10.1039/b514057a (2006).

    Article  Google Scholar 

  102. Law, W. S. et al. On the mechanism of extractive electrospray ionization. Anal. Chem. 82, 4494–4500 (2010).

    Article  Google Scholar 

  103. Chen, R. et al. Trapping, detection, and mass determination of coliphage T4 DNA ions by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 67, 1159–1163 (1995).

    Article  Google Scholar 

  104. van de Waterbeemd, M. et al. High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles. Nat. Methods 14, 283–286 (2017).

    Article  Google Scholar 

  105. Wörner, T. P. et al. Adeno-associated virus capsid assembly is divergent and stochastic. Nat. Commun. 12, 1642 (2021).

    Article  ADS  Google Scholar 

  106. Abonnenc, M., Qiao, L., Liu, B. & Girault, H. H. Electrochemical aspects of electrospray and laser desorption/ionization for mass spectrometry. Ann. Rev. Anal. Chem. 3, 231–254 (2010).

    Article  Google Scholar 

  107. Pozniak, B. P. & Cole, R. B. Perspective on electrospray ionization and its relation to electrochemistry. J. Am. Soc. Mass Spectrom. 26, 369–385 (2015).

    Article  ADS  Google Scholar 

  108. Van Berkel, G. J. & Kertesz, V. Using the electrochemistry of the electrospray ion source. Anal. Chem. 79, 5510–5520 (2007).

    Article  Google Scholar 

  109. Kebarle, P. & Verkerk, U. H. Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom. Rev. 28, 898–917 (2009).

    Article  ADS  Google Scholar 

  110. Akerlof, G. Dielectric constants of some organic solvent–water mixtures at various temperatures. J. Am. Chem. Soc. 54, 4125–4139 (1932).

    Article  Google Scholar 

  111. Šamalikova, M. & Grandori, R. Testing the role of solvent surface tension in protein ionization by electrospray. J. Mass Spectrom. 40, 503–510 (2005).

    Article  ADS  Google Scholar 

  112. Green, F. M., Salter, T. L., Gilmore, I. S., Stokes, P. & O’Connor, G. The effect of electrospray solvent composition on desorption electrospray ionization (DESI) efficiency and spatial resolution. Analyst 135, 731–737 (2010).

    Article  ADS  Google Scholar 

  113. Kageyama, A., Motoyama, A. & Takayama, M. Influence of solvent composition and surface tension on the signal intensity of amino acids in electrospray ionization mass spectrometry. Mass Spectrom. 8, A0077 (2019).

    Article  Google Scholar 

  114. Thacker, J. B. & Schug, K. A. Effects of solvent parameters on the electrospray ionization tandem mass spectrometry response of glucose. Rapid Commun. Mass Spectrom. 32, 1191–1198 (2018).

    Article  ADS  Google Scholar 

  115. Henderson, M. A. & McIndoe, J. S. Ionic liquids enable electrospray ionization mass spectrometry in hexane. Chem. Commun. https://doi.org/10.1039/B606938J (2006).

    Article  Google Scholar 

  116. Li, X. et al. Application of non-polar solvents to extractive electrospray ionization of 1-hydroxypyrene. Anal. Methods 4, 1212–1214 (2012).

    Article  Google Scholar 

  117. Xia, B. et al. Analysis of compounds dissolved in nonpolar solvents by electrospray ionization on conductive nanomaterials. J. Am. Soc. Mass Spectrom. 29, 573–580 (2018).

    Article  ADS  Google Scholar 

  118. Zhang, Q., Su, Y., Liu, X. & Guo, Y. Rapid characterization of nonpolar or low-polarity solvent extracts from herbal medicines by solvent-assisted electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 32, 221–229 (2018).

    Article  ADS  Google Scholar 

  119. Huang, Z., Yao, Y.-N., Li, W. & Hu, B. Analytical properties of electrospray ionization mass spectrometry with solid substrates and nonpolar solvents. Anal. Chim. Acta 1050, 105–112 (2019).

    Article  Google Scholar 

  120. Liigand, J., Laaniste, A. & Kruve, A. pH effects on electrospray ionization efficiency. J. Am. Soc. Mass Spectrom. 28, 461–469 (2017).

    Article  ADS  Google Scholar 

  121. Van Berkel, G. J., Zhou, F. & Aronson, J. T. Changes in bulk solution pH caused by the inherent controlled-current electrolytic process of an electrospray ion source. Int. J. Mass Spectrom. Ion Process. 162, 55–67 (1997).

    Article  ADS  Google Scholar 

  122. Konermann, L., Silva, E. A. & Sogbein, O. F. Electrochemically induced pH changes resulting in protein unfolding in the ion source of an electrospray mass spectrometer. Anal. Chem. 73, 4836–4844 (2001).

    Article  Google Scholar 

  123. Konermann, L. Addressing a common misconception: ammonium acetate as neutral pH ‘buffer’ for native electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1827–1835 (2017).

    Article  ADS  Google Scholar 

  124. Iavarone, A. T., Udekwu, O. A. & Williams, E. R. Buffer loading for counteracting metal salt-induced signal suppression in electrospray ionization. Anal. Chem. 76, 3944–3950 (2004).

    Article  Google Scholar 

  125. King, R., Bonfiglio, R., Fernandez-Metzler, C., Miller-Stein, C. & Olah, T. Mechanistic investigation of ionization suppression in electrospray ionization. J. Am. Soc. Spectrom. 11, 942–950 (2000).

    Article  Google Scholar 

  126. Matuszewski, B. K., Constanzer, M. L. & Chavez-Eng, C. M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal. Chem. 75, 3019–3030 (2003).

    Article  Google Scholar 

  127. Niessen, W. M. A., Manini, P. & Andreoli, R. Matrix effects in quantitative pesticide analysis using liquid chromatography–mass spectrometry. Mass Spectrom. Rev. 25, 881–899 (2006).

    Article  ADS  Google Scholar 

  128. Panuwet, P. et al. Biological matrix effects in quantitative tandem mass spectrometry-based analytical methods: advancing biomonitoring. Crit. Rev. Anal. Chem. 46, 93–105 (2016).

    Article  Google Scholar 

  129. Cortese, M., Gigliobianco, M. R., Magnoni, F., Censi, R. & Martino, P. D. Compensate for or minimize matrix effects? Strategies for overcoming matrix effects in liquid chromatography–mass spectrometry technique: a tutorial review. Molecules 25, 3047 (2020).

    Article  Google Scholar 

  130. European Medicines Agency. Guideline on Bioanalytical Method Validation. EMA https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (2011).

  131. US Food and Drug Administration. Bioanalytical Method Validation Guidance for Industry. FDA https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (2018).

  132. Stahnke, H., Kittlaus, S., Kempe, G. & Alder, L. Reduction of matrix effects in liquid chromatography–electrospray ionization–mass spectrometry by dilution of the sample extracts: how much dilution is needed? Anal. Chem. 84, 1474–1482 (2012).

    Article  Google Scholar 

  133. Mol, H. G. J. et al. Toward a generic extraction method for simultaneous determination of pesticides, mycotoxins, plant toxins, and veterinary drugs in feed and food matrixes. Anal. Chem. 80, 9450–9459 (2008).

    Article  Google Scholar 

  134. González-Curbelo, M. Á. et al. Evolution and applications of the QuEChERS method. Trends Anal. Chem. 71, 169–185 (2015).

    Article  Google Scholar 

  135. Malachová, A., Sulyok, M., Beltrán, E., Berthiller, F. & Krska, R. Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A 1362, 145–156 (2014).

    Article  Google Scholar 

  136. Zhang, H. et al. Internal extractive electrospray ionization mass spectrometry for quantitative determination of fluoroquinolones captured by magnetic molecularly imprinted polymers from raw milk. Sci. Rep. 7, 14714 (2017).

    Article  ADS  Google Scholar 

  137. Liu, C., Wu, Q., Harms, A. C. & Smith, R. D. On-line microdialysis sample cleanup for electrospray ionization mass spectrometry of nucleic acid samples. Anal. Chem. 68, 3295–3299 (1996).

    Article  Google Scholar 

  138. Huber, C. G. & Buchmeiser, M. R. On-line cation exchange for suppression of adduct formation in negative-ion electrospray mass spectrometry of nucleic acids. Anal. Chem. 70, 5288–5295 (1998).

    Article  Google Scholar 

  139. Nabi, M. M. et al. A convenient online desalination tube coupled with mass spectrometry for the direct detection of iodinated contrast media in untreated human spent hemodialysates. PLoS ONE 17, e0268751 (2022).

    Article  Google Scholar 

  140. Zhang, Z., Pulliam, C. J., Flick, T. & Cooks, R. G. Electrophoretic desalting to improve performance in electrospray ionization mass spectrometry. Anal. Chem. 90, 3856–3862 (2018).

    Article  Google Scholar 

  141. Rahman, M. M., Chingin, K. & Chen, H. Online desalting and sequential formation of analyte ions for mass spectrometry characterization of untreated biological samples. Chem. Commun. 55, 9188–9191 (2019).

    Article  Google Scholar 

  142. Hu, J. et al. Effect of nanoemitters on suppressing the formation of metal adduct ions in electrospray ionization mass spectrometry. Anal. Chem. 89, 1838–1845 (2017).

    Article  Google Scholar 

  143. Susa, A. C., Xia, Z. & Williams, E. R. Small emitter tips for native mass spectrometry of proteins and protein complexes from nonvolatile buffers that mimic the intracellular environment. Anal. Chem. 89, 3116–3122 (2017).

    Article  Google Scholar 

  144. Susa, A. C. et al. Submicrometer emitter ESI tips for native mass spectrometry of membrane proteins in ionic and nonionic detergents. J. Am. Soc. Mass Spectrom. 29, 203–206 (2018).

    Article  ADS  Google Scholar 

  145. Xia, Z. & Williams, E. R. Protein–glass surface interactions and ion desalting in electrospray ionization with submicron emitters. J. Am. Soc. Mass Spectrom. 29, 194–202 (2018).

    Article  ADS  Google Scholar 

  146. Susa, A. C., Xia, Z. & Williams, E. R. Native mass spectrometry from common buffers with salts that mimic the extracellular environment. Angew. Chem. Int. Ed. 56, 7912–7915 (2017).

    Article  Google Scholar 

  147. Flick, T. G., Cassou, C. A., Chang, T. M. & Williams, E. R. Solution additives that desalt protein ions in native mass spectrometry. Anal. Chem. 84, 7511–7517 (2012).

    Article  Google Scholar 

  148. Clarke, D. J. & Campopiano, D. J. Desalting large protein complexes during native electrospray mass spectrometry by addition of amino acids to the working solution. Analyst 140, 2679–2686 (2015).

    Article  ADS  Google Scholar 

  149. Cassou, C. A. & Williams, E. R. Desalting protein ions in native mass spectrometry using supercharging reagents. Analyst 139, 4810–4819 (2014).

    Article  ADS  Google Scholar 

  150. Iavarone, A. T., Jurchen, J. C. & Williams, E. R. Effects of solvent on the maximum charge state and charge state distribution of protein ions produced by electrospray ionization. J. Am. Soc. Mass Spectrom. 11, 976–985 (2000).

    Article  Google Scholar 

  151. Iavarone, A. T., Jurchen, J. C. & Williams, E. R. Supercharged protein and peptide ions formed by electrospray ionization. Anal. Chem. 73, 1455–1460 (2001).

    Article  Google Scholar 

  152. Iavarone, A. T. & Williams, E. R. The mechanism of charging and supercharging molecules in electrospray ionization. J. Am. Chem. Soc. 125, 2319–2327 (2003).

    Article  Google Scholar 

  153. Sterling, H. J. & Williams, E. R. Origin of supercharging in electrospray ionization of non-covalent complexes from aqueous solution. J. Am. Soc. Mass Spectrom. 20, 1933–1943 (2009).

    Article  Google Scholar 

  154. Sterling, H. J. et al. The role of conformational flexibility on protein supercharging in native electrospray ionization. Phys. Chem. Chem. Phys. 13, 18288–18296 (2011).

    Article  Google Scholar 

  155. Loo, R. R. O., Lakshmanan, R. & Loo, J. L. What protein charging (and supercharging) reveal about the mechanisms of electrspray ionization. J. Am. Soc. Mass Spectrom. 25, 1675–1693 (2014).

    Article  Google Scholar 

  156. Peters, I., Metwally, H. & Konermann, L. Mechanism of electrospray supercharging for unfolded proteins: solvent-mediated stabilization of protonated sites during chain ejection. Anal. Chem. 91, 6943–6952 (2019).

    Article  Google Scholar 

  157. Going, C. C., Xia, Z. & Williams, E. R. New supercharging reagents produce highly charged protein ions in native mass spectrometry. Analyst 140, 7184–7194 (2015).

    Article  ADS  Google Scholar 

  158. Going, C. C. & Williams, E. R. Supercharging with m-nitrobenzyl alcohol and propylene carbonate: forming highly charged ions with extended, near-linear conformation. Anal. Chem. 87, 3973–3980 (2015).

    Article  Google Scholar 

  159. Sleno, L. & Volmer, D. A. Ion activation methods for tandem mass spectrometry. J. Mass Spectrom. 39, 1091–1112 (2004).

    Article  ADS  Google Scholar 

  160. Tamara, S., den Boer, M. A. & Heck, A. J. R. High-resolution native mass spectrometry. Chem. Rev. 122, 7269–7326 (2022).

    Article  Google Scholar 

  161. Wrona, M., Mauriala, T., Bateman, K. P., Mortishire-Smith, R. J. & O’Connor, D. ‘All-in-one’ analysis for metabolite identification using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry with collision energy switching. Rapid Commun. Mass Spectrom. 19, 2597–2602 (2005).

    Article  ADS  Google Scholar 

  162. Niggeweg, R. et al. A general precursor ion-like scanning mode on quadrupole-TOF instruments compatible with chromatographic separation. Proteomics 6, 41–53 (2006).

    Article  Google Scholar 

  163. Guevremont, R., Siu, K. W. M., Le Blanc, J. C. Y. & Berman, S. S. Are the electrospray mass spectra of proteins related to their aqueous solution chemistry? J. Am. Soc. Mass Spectrom. 3, 216–224 (1992).

    Article  Google Scholar 

  164. Wang, F. et al. CFM-ID 4.0: more accurate ESI-MS/MS spectral prediction and compound identification. Anal. Chem. 93, 11692–11700 (2021).

    Article  Google Scholar 

  165. Kind, T. et al. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 10, 755–758 (2013).

    Article  Google Scholar 

  166. Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender, J. & Neumann, S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J. Cheminform. 8, 3 (2016).

    Article  Google Scholar 

  167. Wang, Y., Kora, G., Bowen, B. P. & Pan, C. MIDAS: a database-searching algorithm for metabolite identification in metabolomics. Anal. Chem. 86, 9496–9503 (2014).

    Article  Google Scholar 

  168. Ridder, L., van der Hooft, J. J. J. & Verhoeven, S. Automatic compound annotation from mass spectrometry data using MAGMa. Mass Spectrom. 3, S0033 (2014).

    Article  Google Scholar 

  169. Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).

    Article  Google Scholar 

  170. Katajamaa, M., Miettinen, J. & Orešič, M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634–636 (2006).

    Article  Google Scholar 

  171. Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform 11, 395 (2010).

    Article  Google Scholar 

  172. Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019).

    Article  Google Scholar 

  173. De Vijlder, T. et al. A tutorial in small molecule identification via electrospray ionization-mass spectrometry: the practical art of structural elucidation. Mass Spectrom. Rev. 37, 607–629 (2018). A beginner’s guide for interpretation of an ESI mass spectrum.

    Article  ADS  Google Scholar 

  174. Varray, S. et al. Poly(ethylene glycol) in electrospray ionization (ESI) mass spectrometry. Analusis 28, 263–268 (2000).

    Article  Google Scholar 

  175. Solntsev, S. K., Shortreed, M. R., Frey, B. L. & Smith, L. M. Enhanced global post-translational modification discovery with MetaMorpheus. J. Proteome Res. 17, 1844–1851 (2018).

    Article  Google Scholar 

  176. Wu, Z. et al. MASH Explorer: a universal software environment for top-down proteomics. J. Proteome Res. 19, 3867–3876 (2020).

    Article  Google Scholar 

  177. Marty, M. T. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015).

    Article  Google Scholar 

  178. Zhang, Y., Fonslow, B. R., Shan, B., Baek, M.-C. & Yates, J. R. III Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 113, 2343–2394 (2013).

    Article  Google Scholar 

  179. Elpa, D. P., Prabhu, G. R. D., Wu, S.-P., Tay, K. S. & Urban, P. L. Automation of mass spectrometric detection of analytes and related workflows: a review. Talanta 208, 120304 (2020).

    Article  Google Scholar 

  180. Gu, L. et al. Liquid chromatographic/electrospray ionization mass spectrometric studies of proanthocyanidins in foods. J. Mass Spectrom. 38, 1272–1280 (2003).

    Article  ADS  Google Scholar 

  181. García-Reyes, J. F., Jackson, A. U., Molina-Díaz, A. & Cooks, R. G. Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food. Anal. Chem. 81, 820–829 (2009).

    Article  Google Scholar 

  182. Beneito-Cambra, M. et al. Ambient (desorption/ionization) mass spectrometry methods for pesticide testing in food: a review. Anal. Methods 12, 4831–4852 (2020).

    Article  Google Scholar 

  183. Barcelo, D. (ed.) Applications of LCMS in Environmental Chemistry (Elsevier, 1996).

  184. Mattarozzi, M. & Careri, M. in Encyclopedia of Analytical Chemistry (eds Meyers, R. A. et al.) 1–41 (Wiley, 2015).

  185. Beccaria, M. & Cabooter, D. Current developments in LC–MS for pharmaceutical analysis. Analyst 145, 1129–1157 (2020).

    Article  ADS  Google Scholar 

  186. Géhin, C. & Holman, S. W. Advances in high-resolution mass spectrometry applied to pharmaceuticals in 2020: a whole new age of information. Anal. Sci. Adv. 2, 142–156 (2021).

    Article  Google Scholar 

  187. Chace, D. H. Mass spectrometry in the clinical laboratory. Chem. Rev. 101, 445–478 (2001).

    Article  Google Scholar 

  188. Prabhu, G. R. D., Elpa, D. P., Chiu, H.-Y. & Urban, P. L. in Encyclopedia of Analytical Science (eds Worsfold, P., Poole, C., Townshend, A. & Miró, M.) 318–333 (Elsevier, 2019).

  189. Andrade, G. C. R. M. et al. Liquid chromatography–electrospray ionization tandem mass spectrometry and dynamic multiple reaction monitoring method for determining multiple pesticide residues in tomato. Food Chem. 175, 57–65 (2015).

    Article  Google Scholar 

  190. Roach, P., Laskin, J. & Laskin, A. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135, 2233–2236 (2010). Regarded as the first report on nanospray-DESI.

    Article  ADS  Google Scholar 

  191. Dutkiewicz, E. P., Lin, J.-D., Tseng, T.-W., Wang, Y.-S. & Urban, P. L. Hydrogel micropatches for sampling and profiling skin metabolites. Anal. Chem. 86, 2337–2344 (2014).

    Article  Google Scholar 

  192. Dutkiewicz, E. P., Hsieh, K.-T., Wang, Y.-S., Chiu, H.-Y. & Urban, P. L. Hydrogel micropatch and mass spectrometry-assisted screening for psoriasis-related skin metabolites. Clin. Chem. 62, 1120–1128 (2016).

    Article  Google Scholar 

  193. Zhang, H. et al. Direct assessment of phytochemicals inherent in plant tissues using extractive electrospray ionization mass spectrometry. J. Agric. Food Chem. 61, 10691–10698 (2013).

    Article  ADS  Google Scholar 

  194. Mucha, E. et al. Glycan fingerprinting via cold-ion infrared spectroscopy. Angew. Chem. Int. Ed. 56, 11248–11251 (2017).

    Article  Google Scholar 

  195. Greis, K. et al. Studying the key intermediate of RNA autohydrolysis by cryogenic gas-phase infrared spectroscopy. Angew. Chem. Int. Ed. 61, e202115481 (2022).

    Google Scholar 

  196. Faleh, A. B., Warnke, S. & Rizzo, T. R. Combining ultrahigh-resolution ion-mobility spectrometry with cryogenic infrared spectroscopy for the analysis of glycan mixtures. Anal. Chem. 91, 4876–4882 (2019).

    Article  Google Scholar 

  197. Yatsyna, V., Abikhodr, A. H., Faleh, A. B., Warnke, S. & Rizzo, T. R. High-throughput multiplexed infrared spectroscopy of ion mobility-separated species using Hadamard transform. Anal. Chem. 94, 2912–2917 (2022).

    Article  Google Scholar 

  198. Grabarics, M. et al. Mass spectrometry-based techniques to elucidate the sugar code. Chem. Rev. 122, 7840–7908 (2022).

    Article  Google Scholar 

  199. Kelleher, N. L. et al. Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J. Am. Chem. Soc. 121, 806–812 (1999).

    Article  Google Scholar 

  200. Chait, B. T. Mass spectrometry: bottom-up or top-down? Science 314, 65–66 (2006).

    Article  Google Scholar 

  201. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    Article  ADS  Google Scholar 

  202. Moradian, A., Kalli, A., Sweredoski, M. J. & Hess, S. The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications. Proteomics 14, 489–497 (2014).

    Article  Google Scholar 

  203. Hermann, J., Schurgers, L. & Jankowski, V. Identification and characterization of post-translational modifications: clinical implications. Mol. Asp. Med. 86, 101066 (2022).

    Article  Google Scholar 

  204. Mann, M. The rise of mass spectrometry and the fall of Edman degradation. Clin. Chem. 62, 293–294 (2016).

    Article  Google Scholar 

  205. Zhong, X., Chen, H. & Zare, R. N. Ultrafast enzymatic digestion of proteins by microdroplet mass spectrometry. Nat. Commun. 11, 1049 (2020).

    Article  ADS  Google Scholar 

  206. Konermann, L. & Douglas, D. J. Acid-induced unfolding of cytochrome c at different methanol concentrations: electrospray ionization mass spectrometry specifically monitors changes in the tertiary structure. Biochemistry 36, 12296–12302 (1997).

    Article  Google Scholar 

  207. Pan, X. M., Sheng, X. R., Yang, S. M. & Zhou, J. M. Probing subtle acid-induced conformational changes of ribonuclease A by electrospray mass spectrometry. FEBS Lett. 402, 25–27 (1997).

    Article  Google Scholar 

  208. Kashiwagi, T. et al. An electrospray-ionization mass spectrometry analysis of the pH-dependent dissociation and denaturation processes of a heterodimeric protein. J. Am. Soc. Mass Spectrom. 11, 54–61 (2000).

    Article  Google Scholar 

  209. Chang, C.-M., Prabhu, G. R. D., Tseng, C.-M. & Urban, P. L. Temporal analysis of conformers in the course of pH scan directed by urea–urease reaction — a “protein clock”. Anal. Chem. 91, 8814–8819 (2019).

    Article  Google Scholar 

  210. Prabhu, G. R. D., Yang, T.-H., Shiu, R.-T., Witek, H. A. & Urban, P. L. Scanning pH-metry for observing reversibility in protein folding. Biochemistry 61, 2377–2389 (2022).

    Article  Google Scholar 

  211. Konermann, L., Collings, B. A. & Douglas, D. J. Cytochrome c folding kinetics studied by time-resolved electrospray ionization mass spectrometry. Biochemistry 36, 5554–5559 (1997).

    Article  Google Scholar 

  212. Lee, V. W. S., Chen, Y.-L. & Konermann, L. Reconstitution of acid-denatured holomyoglobin studied by time-resolved electrospray ionization mass spectrometry. Anal. Chem. 71, 4154–4159 (1999).

    Article  Google Scholar 

  213. Wilson, D. J. & Konermann, L. A capillary mixer with adjustable reaction chamber volume for millisecond time-resolved studies by electrospray mass spectrometry. Anal. Chem. 75, 6408–6414 (2003).

    Article  Google Scholar 

  214. Konermann, L., Rosell, F. I., Mauk, A. G. & Douglas, D. J. Acid-induced denaturation of myoglobin studied by time-resolved electrospray ionization mass spectrometry. Biochemistry 36, 6448–6454 (1997).

    Article  Google Scholar 

  215. Sogbein, O. O., Simmons, D. A. & Konermann, L. Effects of pH on the kinetic reaction mechanism of myoglobin unfolding studied by time-resolved electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 11, 312–319 (2000).

    Article  Google Scholar 

  216. Lee, J. K., Kim, S., Nam, H. G. & Zare, R. N. Microdroplet fusion mass spectrometry for fast reaction kinetics. Proc. Natl Acad. Sci. USA 112, 3898–3903 (2015).

    Article  ADS  Google Scholar 

  217. Goto, Y., Takahashi, N. & Fink, A. L. Mechanism of acid-induced folding of proteins. Biochemistry 29, 3480–3488 (1990).

    Article  Google Scholar 

  218. Lee, J. W. & Kim, H. I. Investigating acid-induced structural transitions of lysozyme in an electrospray ionization source. Analyst 140, 661–669 (2015).

    Article  ADS  Google Scholar 

  219. Kharlamova, A., Prentice, B. M., Huang, T.-Y. & McLuckey, S. A. Electrospray droplet exposure to gaseous acids for the manipulation of protein charge state distributions. Anal. Chem. 82, 7422–7429 (2010).

    Article  Google Scholar 

  220. Kharlamova, A. & McLuckey, S. A. Negative electrospray droplet exposure to gaseous bases for the manipulation of protein charge state distributions. Anal. Chem. 83, 431–437 (2011).

    Article  Google Scholar 

  221. Benesch, J. L. P., Sobott, F. & Robinson, C. V. Thermal dissociation of multimeric protein complexes by using nanoelectrospray mass spectrometry. Anal. Chem. 75, 2208–2214 (2003).

    Article  Google Scholar 

  222. Daneshfar, R., Kitova, E. N. & Klassen, J. S. Determination of protein–ligand association thermochemistry using variable-temperature nanoelectrospray mass spectrometry. J. Am. Chem. Soc. 126, 4786–4787 (2004).

    Article  Google Scholar 

  223. Wang, G., Abzalimov, R. R. & Kaltashov, I. A. Direct monitoring of heat-stressed biopolymers with temperature-controlled electrospray ionization mass spectrometry. Anal. Chem. 83, 2870–2876 (2011).

    Article  Google Scholar 

  224. Harrison, J. A., Pruška, A., Oganesyan, I., Bittner, P. & Zenobi, R. Temperature-controlled electrospray ionization: recent progress and applications. Chem. Eur. J. 27, 18015–18028 (2021).

    Article  Google Scholar 

  225. Cong, X. et al. Determining membrane protein–lipid binding thermodynamics using native mass spectrometry. J. Am. Chem. Soc. 138, 4346–4349 (2016).

    Article  Google Scholar 

  226. Walker, T. E. et al. Temperature regulates stability, ligand binding (Mg2+ and ATP), and stoichiometry of GroEL–GroES complexes. J. Am. Chem. Soc. 144, 2667–2678 (2022).

    Article  Google Scholar 

  227. Brown, C. J., Woodall, D. W., El-Baba, T. J. & Clemmer, D. E. Characterizing thermal transitions of IgG with mass spectrometry. J. Am. Soc. Mass Spectrom. 30, 2438–2445 (2019).

    Article  ADS  Google Scholar 

  228. El-Baba, T. J. & Clemmer, D. E. Solution thermochemistry of concanavalin A tetramer conformers measured by variable-temperature ESI–IMS–MS. Int. J. Mass Spectrom. 443, 93–100 (2019).

    Article  Google Scholar 

  229. Raab, S. A. et al. Evidence for many unique solution structures for chymotrypsin inhibitor 2: a thermodynamic perspective derived from vT–ESI–IMS–MS measurements. J. Am. Chem. Soc. 142, 17372–17383 (2020).

    Article  Google Scholar 

  230. Woodall, D. W. et al. Melting of hemoglobin in native solutions as measured by IMS–MS. Anal. Chem. 92, 3440–3446 (2020).

    Article  Google Scholar 

  231. Woodall, D. W. et al. Variable-temperature ESI–IMS–MS analysis of myohemerythrin reveals ligand losses, unfolding, and a non-native disulfide bond. Anal. Chem. 91, 6808–6814 (2019).

    Article  Google Scholar 

  232. Leitner, A. Cross-linking and other structural proteomics techniques: how chemistry is enabling mass spectrometry applications in structural biology. Chem. Sci. 7, 4792–4803 (2016).

    Article  Google Scholar 

  233. Katta, V., Chait, B. T. & Carr, S. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 5, 214–217 (1991).

    Article  ADS  Google Scholar 

  234. Witten, J. et al. Mapping protein conformational landscapes under strongly native conditions with hydrogen exchange mass spectrometry. J. Phys. Chem. B 119, 10016–10024 (2015).

    Article  Google Scholar 

  235. Miranker, A., Robinson, C. V., Radford, S. E., Aplin, R. T. & Dobson, C. M. Detection of transient protein folding populations by mass spectrometry. Science 262, 896–900 (1993).

    Article  ADS  Google Scholar 

  236. Underbakke, E. S., Iavarone, A. T. & Marletta, M. A. Higher-order interactions bridge the nitric oxide receptor and catalytic domains of soluble guanylate cyclase. Proc. Natl Acad. Sci. USA 110, 6777–6782 (2013).

    Article  ADS  Google Scholar 

  237. James, E. I., Murphree, T. A., Vorauer, C., Engen, J. R. & Guttman, M. Advances in hydrogen/deuterium exchange mass spectrometry and the pursuit of challenging biological systems. Chem. Rev. 122, 7562–7623 (2022).

    Article  Google Scholar 

  238. Pirrone, G. F., Iacob, R. E. & Engen, J. R. Applications of hydrogen/deuterium exchange MS from 2012 to 2014. Anal. Chem. 87, 99–118 (2015).

    Article  Google Scholar 

  239. Engen, J. R., Botzanowski, T., Peterle, D., Georgescauld, F. & Wales, T. E. Developments in hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 93, 567–582 (2021).

    Article  Google Scholar 

  240. Fasold, H., Klappenberger, J., Meyer, C. & Remold, H. Bifunctional reagents for the crosslinking of proteins. Angew. Chem. Int. Ed. 10, 795–801 (1971).

    Article  Google Scholar 

  241. Paramelle, D., Miralles, G., Subra, G. & Martinez, J. Chemical cross-linkers for protein structure studies by mass spectrometry. Proteomics 13, 438–456 (2013).

    Article  Google Scholar 

  242. O’Reilly, F. J. & Rappsilber, J. Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology. Nat. Struct. Mol. Biol. 25, 1000–1008 (2018).

    Article  Google Scholar 

  243. Chu, F., Thornton, D. T. & Nguyen, H. T. Chemical cross-linking in the structural analysis of protein assemblies. Methods 144, 53–63 (2018).

    Article  Google Scholar 

  244. Lasker, K. et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc. Natl Acad. Sci. USA 109, 1380–1387 (2012).

    Article  ADS  Google Scholar 

  245. O’Reilly, F. J. et al. In-cell architecture of an actively transcribing–translating expressome. Science 369, 554–557 (2020).

    Article  ADS  Google Scholar 

  246. Hambly, D. M. & Gross, M. L. Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom. 16, 2057–2063 (2005).

    Article  Google Scholar 

  247. Liu, X. R., Rempel, D. L. & Gross, M. L. Protein higher-order-structure determination by fast photochemical oxidation of proteins and mass spectrometry analysis. Nat. Protoc. 15, 3942–3970 (2020).

    Article  Google Scholar 

  248. Liu, X. R., Zhang, M. M., Rempel, D. L. & Gross, M. L. A single approach reveals the composite conformational changes, order of binding, and affinities for calcium binding to calmodulin. Anal. Chem. 91, 5508–5512 (2019).

    Article  Google Scholar 

  249. Li, K. S., Rempel, D. L. & Gross, M. L. Conformational-sensitive fast photochemical oxidation of proteins and mass spectrometry characterize amyloid beta 1–42 aggregation. J. Am. Chem. Soc. 138, 12090–12098 (2016).

    Article  Google Scholar 

  250. Chen, J., Rempel, D. L., Gau, B. C. & Gross, M. L. Fast photochemical oxidation of proteins and mass spectrometry follow submillisecond protein folding at the amino-acid level. J. Am. Chem. Soc. 134, 18724–18731 (2012).

    Article  Google Scholar 

  251. Espino, J. A., Mali, V. S. & Jones, L. M. In cell footprinting coupled with mass spectrometry for the structural analysis of proteins in live cells. Anal. Chem. 87, 7971–7978 (2015).

    Article  Google Scholar 

  252. Espino, J. A. & Jones, L. M. Illuminating biological interactions with in vivo protein footprinting. Anal. Chem. 91, 6577–6584 (2019).

    Article  Google Scholar 

  253. Kaur, U., Johnson, D. T. & Jones, L. M. Validation of the applicability of in-cell fast photochemical oxidation of proteins across multiple eukaryotic cell lines. J. Am. Soc. Mass Spectrom. 31, 1372–1379 (2020).

    Article  Google Scholar 

  254. Julka, S. et al. Quantitative characterization of solid epoxy resins using comprehensive two dimensional liquid chromatography coupled with electrospray ionization-time of flight mass spectrometry. Anal. Chem. 81, 4271–4279 (2009).

    Article  Google Scholar 

  255. Gruendling, T., Weidner, S., Falkenhagen, J. & Barner-Kowollik, C. Mass spectrometry in polymer chemistry: a state-of-the-art up-date. Polym. Chem. 1, 599–617 (2010).

    Article  Google Scholar 

  256. Crotty, S., Gerişlioğlu, S., Endres, K. J., Wesdemiotis, C. & Schubert, U. S. Polymer architectures via mass spectrometry and hyphenated techniques: a review. Anal. Chim. Acta 932, 1–21 (2016).

    Article  Google Scholar 

  257. Trimpin, S. & Clemmer, D. E. Ion mobility spectrometry/mass spectrometry snapshots for assessing the molecular compositions of complex polymeric systems. Anal. Chem. 80, 9073–9083 (2008).

    Article  Google Scholar 

  258. Trimpin, S., Plasencia, M., Isailovic, D. & Clemmer, D. E. Resolving oligomers from fully grown polymers with IMS−MS. Anal. Chem. 79, 7965–7974 (2007).

    Article  Google Scholar 

  259. Li, X., Guo, L., Casiano-Maldonado, M., Zhang, D. & Wesdemiotis, C. Top-down multidimensional mass spectrometry methods for synthetic polymer analysis. Macromolecules 44, 4555–4564 (2011).

    Article  ADS  Google Scholar 

  260. Buback, M., Frauendorf, H. & Vana, P. Initiation of free-radical polymerization by peroxypivalates studied by electrospray ionization mass spectrometry. J. Polym. Sci. A Polym. Chem. 42, 4266–4275 (2004).

    Article  ADS  Google Scholar 

  261. Buback, M., Frauendorf, H., Günzler, F. & Vana, P. Electrospray ionization mass spectrometric end-group analysis of PMMA produced by radical polymerization using diacyl peroxide initiators. Polymer 48, 5590–5598 (2007).

    Article  Google Scholar 

  262. Buback, M., Frauendorf, H., Günzler, F., Huff, F. & Vana, P. Determining initiator efficiency in radical polymerization by electrospray-ionization mass spectrometry. Macromol. Chem. Phys. 210, 1591–1599 (2009).

    Article  Google Scholar 

  263. Szablan, Z. et al. Mapping photolysis product radical reactivities via soft ionization mass spectrometry in acrylate, methacrylate, and itaconate systems. Macromolecules 40, 6820–6833 (2007).

    Article  ADS  Google Scholar 

  264. Gruendling, T., Voll, D., Guilhaus, M. & Barner-Kowollik, C. A perfect couple: PLP/SEC/ESI-MS for the accurate determination of propagation rate coefficients in free radical polymerization. Macromol. Chem. Phys. 211, 80–90 (2010).

    Article  Google Scholar 

  265. De Bruycker, K., Welle, A., Hirth, S., Blanksby, S. J. & Barner-Kowollik, C. Mass spectrometry as a tool to advance polymer science. Nat. Rev. Chem. 4, 257–268 (2020).

    Article  Google Scholar 

  266. Jackson, A. T., Williams, J. P. & Scrivens, J. H. Desorption electrospray ionization mass spectrometry and tandem mass spectrometry of low molecular weight synthetic polymers. Rapid Commun. Mass Spectrom. 20, 2717–2727 (2006).

    Article  ADS  Google Scholar 

  267. Friia, M., Legros, V., Tortajada, J. & Buchmann, W. Desorption electrospray ionization–Orbitrap mass spectrometry of synthetic polymers and copolymers. J. Mass Spectrom. 47, 1023–1033 (2012).

    Article  ADS  Google Scholar 

  268. Siuzdak, G. et al. Mass spectrometry and viral analysis. Chem. Biol. 3, 45–48 (1996).

    Article  Google Scholar 

  269. Bothner, B. & Siuzdak, G. Electrospray ionization of a whole virus: analyzing mass, structure, and viability. ChemBioChem 5, 258–260 (2004).

    Article  Google Scholar 

  270. Smith, R. D., Cheng, X., Brace, J. E., Hofstadler, S. A. & Anderson, G. A. Trapping, detection and reaction of very large single molecular ions by mass spectrometry. Nature 369, 137–139 (1994).

    Article  ADS  Google Scholar 

  271. Fuerstenau, S. D. & Benner, W. H. Molecular weight determination of megadalton DNA electrospray ions using charge detection time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 9, 1528–1538 (1995).

    Article  ADS  Google Scholar 

  272. Benner, W. H. A gated electrostatic ion trap to repetitiously measure the charge and m/z of large electrospray ions. Anal. Chem. 69, 4162–4168 (1997).

    Article  Google Scholar 

  273. Fuerstenau, S. D. et al. Mass spectrometry of an intact virus. Angew. Chem. 113, 559–562 (2001).

    Article  ADS  Google Scholar 

  274. Keifer, D. Z., Motwani, T., Teschke, C. M. & Jarrold, M. F. Measurement of the accurate mass of a 50 MDa infectious virus. Rapid Commun. Mass Spectrom. 30, 1957–1962 (2016).

    Article  ADS  Google Scholar 

  275. Elliott, A. G., Merenbloom, S. I., Chakrabarty, S. & Williams, E. R. Single particle analyzer of mass: a charge detection mass spectrometer with a multi-detector electrostatic ion trap. Int. J. Mass Spectrom. 414, 45–55 (2017).

    Article  Google Scholar 

  276. Kafader, J. O. et al. Measurement of individual ions sharply increases the resolution of orbitrap mass spectra of proteins. Anal. Chem. 91, 2776–2783 (2019).

    Article  Google Scholar 

  277. Wörner, T. P. et al. Resolving heterogeneous macromolecular assemblies by orbitrap-based single-particle charge detection mass spectrometry. Nat. Methods 17, 395–398 (2020).

    Article  Google Scholar 

  278. Wörner, T. P., Shamorkina, T. M., Snijder, J. & Heck, A. J. R. Mass spectrometry-based structural virology. Anal. Chem. 93, 620–640 (2021).

    Article  Google Scholar 

  279. Harper, C. C. et al. Effects of molecular size on resolution in charge detection mass spectrometry. Anal. Chem. 94, 11703–11712 (2022).

    Article  Google Scholar 

  280. Antoine, R. Weighing synthetic polymers of ultra-high molar mass and polymeric nanomaterials: what can we learn from charge detection mass spectrometry? Rapid Commun. Mass Spectrom. 34, e8539 (2020).

    Article  Google Scholar 

  281. Miller, L. M., Bond, K. M., Draper, B. E. & Jarrold, M. F. Characterization of classical vaccines by charge detection mass spectrometry. Anal. Chem. 93, 11965–11972 (2021).

    Article  Google Scholar 

  282. Dunbar, C. A., Callaway, H. M., Parrish, C. R. & Jarrold, M. F. Probing antibody binding to canine parvovirus with charge detection mass spectrometry. J. Am. Chem. Soc. 140, 15701–15711 (2018).

    Article  Google Scholar 

  283. Keifer, D. Z., Motwani, T., Teschke, C. M. & Jarrold, M. F. Acquiring structural information on virus particles with charge detection mass spectrometry. J. Am. Soc. Mass Spectrom. 27, 1028–1036 (2016).

    Article  ADS  Google Scholar 

  284. Doussineau, T. et al. Charge detection mass spectrometry for the characterization of mass and surface area of composite nanoparticles. J. Phys. Chem. C 119, 10844–10849 (2015).

    Article  Google Scholar 

  285. Elliott, A. G., Harper, C. C., Lin, H.-W. & Williams, E. R. Mass, mobility and MSn measurements of single ions using charge detection mass spectrometry. Analyst 142, 2760–2769 (2017).

    Article  ADS  Google Scholar 

  286. Tito, M. A., Tars, K., Valegard, K., Hajdu, J. & Robinson, C. V. Electrospray time-of-flight mass spectrometry of the intact MS2 virus capsid. J. Am. Chem. Soc. 122, 3550–3551 (2000).

    Article  Google Scholar 

  287. Harper, C. C., Brauer, D. D., Francis, M. B. & Williams, E. R. Direct observation of ion emission from charged aqueous nanodrops: effects on gaseous macromolecular charging. Chem. Sci. 12, 5185–5195 (2021).

    Article  Google Scholar 

  288. Sun, J., Yin, Y., Li, W., Jin, O. & Na, N. Chemical reaction monitoring my ambient mass spectrometry. Mass Spectrom. Rev. 41, 70–99 (2022).

    Article  ADS  Google Scholar 

  289. Guo, H., Qian, R., Liao, Y., Ma, S. & Guo, Y. ESI-MS studies on the mechanism of Pd(0)-catalyzed three-component tandem double addition-cyclization reaction. J. Am. Chem. Soc. 127, 13060–13064 (2005).

    Article  Google Scholar 

  290. Qian, R., Guo, H., Liao, Y., Guo, Y. & Ma, S. Probing the mechanism of the palladium-catalyzed addition of organoboronic acids to allenes in the presence of AcOH by ESI-FTMS. Angew. Chem. Int. Ed. 44, 4771–4774 (2005).

    Article  Google Scholar 

  291. Limberger, J., Leal, B. C., Monteiro, A. L. & Dupont, J. Charge-tagged ligands: useful tools for immobilizing complexes and detecting reaction species during catalysis. Chem. Sci. 6, 77–94 (2015).

    Article  Google Scholar 

  292. Yao, Q. et al. Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction. Nat. Commun. 8, 1555 (2017).

    Article  ADS  Google Scholar 

  293. Wilson, S. R., Kaprinidis, N., Wu, Y. & Schuster, D. I. A new reaction of fullerenes: [2+2]-photocycloaddition of enones. J. Am. Chem. Soc. 115, 8495–8496 (1993).

    Article  Google Scholar 

  294. Zhou, F., Van Berkel, G. J. & Donovan, B. T. Electron-transfer reactions of fluorofullerene C60F48. J. Am. Chem. Soc. 116, 5485–5486 (1994).

    Article  Google Scholar 

  295. Schuster, D. I. et al. [2 + 2] Photocycloaddition of cyclic enones to C60. J. Am. Chem. Soc. 118, 5639–5647 (1996).

    Article  Google Scholar 

  296. Chen, Y.-C. & Urban, P. L. Time-resolved mass spectrometry. Trends Anal. Chem. 44, 106–120 (2013).

    Article  Google Scholar 

  297. Lee, E. D., Mueck, W., Henion, J. D. & Covey, T. R. Real-time reaction monitoring by continuous-introduction ion-spray tandem mass spectrometry. J. Am. Chem. Soc. 111, 4600–4604 (1989).

    Article  Google Scholar 

  298. Hsu, F.-J., Liu, T.-L., Laskar, A. H., Shiea, J. & Huang, M.-Z. Gravitational sampling electrospray ionization mass spectrometry for real-time reaction monitoring. Rapid Commun. Mass Spectrom. 28, 1979–1986 (2014).

    Article  ADS  Google Scholar 

  299. Luo, J. et al. Rhodium-catalyzed selective partial hydrogenation of alkynes. Organometallics 34, 3021–3028 (2015).

    Article  Google Scholar 

  300. Ting, H. & Urban, P. L. Spatiotemporal effects of a bioautocatalytic chemical wave revealed by time-resolved mass spectrometry. RSC Adv. 4, 2103–2108 (2014).

    Article  ADS  Google Scholar 

  301. Yu, Z., Chen, L. C., Erra-Balsells, R., Nonami, H. & Hiraoka, K. Real-time reaction monitoring by probe electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 24, 1507–1513 (2010).

    Article  ADS  Google Scholar 

  302. Ingram, A. J., Boeser, C. L. & Zare, R. N. Going beyond electrospray: mass spectrometric studies of chemical reactions in and on liquids. Chem. Sci. 7, 39–55 (2016).

    Article  Google Scholar 

  303. Cheng, S., Wu, Q., Xiao, H. & Chen, H. Online monitoring of enzymatic reactions using time-resolved desorption electrospray ionization mass spectrometry. Anal. Chem. 89, 2338–2344 (2017).

    Article  Google Scholar 

  304. Chen, T.-Y., Wu, M.-L. & Chen, Y.-C. Ultrasonication-assisted spray ionization-based micro-reactors for online monitoring of fast chemical reactions by mass spectrometry. J. Mass Spectrom. 54, 26–34 (2018).

    Article  ADS  Google Scholar 

  305. Zhang, X., Pei, M., Wu, D., Yang, S. & Le, Z. Real-time monitoring of the reaction between aniline and acetonylacetone using extractive electrospray ionization tandem mass spectrometry. Sci. Rep. 9, 19279 (2019).

    Article  ADS  Google Scholar 

  306. Bain, R. M., Pulliam, C. J. & Cooks, R. G. Accelerated Hantzsch electrospray synthesis with temporal control of reaction intermediates. Chem. Sci. 6, 397–401 (2015).

    Article  Google Scholar 

  307. Lee, J. K., Nam, H. G. & Zare, R. N. Microdroplet fusion mass spectrometry: accelerated kinetics of acid-induced chlorophyll demetallation. Q. Rev. Biophys. 50, e2 (2017).

    Article  ADS  Google Scholar 

  308. van Geenen, F. A. M. G., Franssen, M. C. R., Zuilhof, H. & Nielen, M. W. F. Reactive laser ablation electrospray ionization time-resolved mass spectrometry of click reactions. Anal. Chem. 90, 10409–10416 (2018).

    Article  Google Scholar 

  309. Lee, J. K., Banerjee, S., Nam, H. G. & Zare, R. N. Acceleration of reaction in charged microdroplets. Q. Rev. Biophys. 48, 437–444 (2015).

    Article  Google Scholar 

  310. Banerjee, S., Gnanamani, E., Yan, X. & Zare, R. N. Can all bulk-phase reactions be accelerated in microdroplets? Analyst 142, 1399–1402 (2017).

    Article  ADS  Google Scholar 

  311. Sobreira, T. J. P. et al. High-throughput screening of organic reactions in microdroplets using desorption electrospray ionization mass spectrometry (DESI-MS): hardware and software implementation. Anal. Methods 12, 3654–3669 (2020).

    Article  Google Scholar 

  312. Morato, N. M., Le, M. T., Holden, D. T. & Cooks, R. G. Automated high-throughput system combining small-scale synthesis with bioassays and reaction screening. SLAS Technol. 26, 555–571 (2021).

    Article  Google Scholar 

  313. Huang, K.-H., Ghosh, J., Xu, S. & Cooks, R. G. Late-stage functionalization and characterization of drugs by high-throughput desorption electrospray ionization mass spectrometry. ChemPlusChem 87, e2021004 (2022).

    Article  Google Scholar 

  314. Wishart, D. S. et al. HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 50, 22–31 (2022).

    Article  Google Scholar 

  315. Guijas, C. et al. METLIN: a technology platform for identifying knowns and unknowns. Anal. Chem. 90, 3156–3164 (2018).

    Article  Google Scholar 

  316. Bian, Y. et al. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS. Nat. Commun. 11, 157 (2020).

    Article  ADS  Google Scholar 

  317. Fritzsche, S., Hoffmann, P. & Belder, D. Chip electrophoresis with mass spectrometric detection in record speed. Lab Chip 10, 1227–1230 (2010).

    Article  Google Scholar 

  318. Li, X., Hu, B., Ding, J. & Chen, H. Rapid characterization of complex viscous samples at molecular levels by neutral desorption extractive electrospray ionization mass spectrometry. Nat. Protoc. 6, 1010–1025 (2011).

    Article  Google Scholar 

  319. Ouyang, Z. & Cooks, R. G. Miniature mass spectrometers. Annu. Rev. Anal. Chem. 2, 187–214 (2009).

    Article  Google Scholar 

  320. Snyder, D. T., Pulliam, C. J., Ouyang, Z. & Cooks, R. G. Miniature and fieldable mass spectrometers: recent advances. Anal. Chem. 88, 2–29 (2016).

    Article  Google Scholar 

  321. Pandey, S. et al. Miniature mass spectrometer-based point-of-care assay for cabotegravir and rilpivirine in whole blood. Anal. Bioanal. Chem. 414, 3387–3395 (2022).

    Article  Google Scholar 

  322. Li, L. et al. Mini 12, miniature mass spectrometer for clinical and other applications — introduction and characterization. Anal. Chem. 86, 2909–2916 (2014).

    Article  Google Scholar 

  323. Pulliam, C. J. et al. Rapid discrimination of bacteria using a miniature mass spectrometer. Analyst 141, 1633–1636 (2016).

    Article  ADS  Google Scholar 

  324. Stolz, A. et al. Recent advances in capillary electrophoresis–mass spectrometry: instrumentation, methodology and applications. Electrophoresis 40, 79–112 (2019).

    Article  Google Scholar 

  325. Ramautar, R. in Capillary Electrophoresis–Mass Spectrometry for Metabolomics (ed. Ramautar, R.) 1–20 (Royal Society of Chemistry, 2018).

  326. Gaspari, M. & Cuda, G. in Nanoproteomics (eds Toms, S. A. & Weil, R. J.) 115–126 (Humana Totowa, 2011).

  327. Chetwynd, A. J. & David, A. A review of nanoscale LC-ESI for metabolomics and its potential to enhance the metabolome coverage. Talanta 182, 380–390 (2018).

    Article  Google Scholar 

  328. Cumeras, R., Figueras, E., Davis, C. E., Baumbach, J. I. & Gràcia, I. Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst 140, 1376–1390 (2015).

    Article  ADS  Google Scholar 

  329. Cumeras, R., Figueras, E., Davis, C. E., Baumbach, J. I. & Gràcia, I. Review on ion mobility spectrometry. Part 2: hyphenated methods and effects of experimental parameters. Analyst 140, 1391–1410 (2015).

    Article  ADS  Google Scholar 

  330. Camacho, I. S. et al. Native mass spectrometry reveals the conformational diversity of the UVR8 photoreceptor. Proc. Natl Acad. Sci. USA 116, 1116–1125 (2019).

    Article  ADS  Google Scholar 

  331. Hernández-Mesa, M., Le Bizec, B., Monteau, F., García-Campaña, A. M. & Dervilly-Pinel, G. Collision cross section (CCS) database: an additional measure to characterize steroids. Anal. Chem. 90, 4616–4625 (2018).

    Article  Google Scholar 

  332. Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Anal. Chim. Acta 1043, 52–63 (2018).

    Article  Google Scholar 

  333. Wojcik, R. et al. SLIM ultrahigh resolution ion mobility spectrometry separations of isotopologues and isotopomers reveal mobility shifts due to mass distribution changes. Anal. Chem. 91, 11952–11962 (2019).

    Article  Google Scholar 

  334. Miller, L. M. et al. Heterogeneity of glycan processing on trimeric SARS-CoV-2 spike protein revealed by charge detection mass spectrometry. J. Am. Chem. Soc. 143, 3959–3966 (2021).

    Article  Google Scholar 

  335. Rathore, A. S. & Auclair, J. Charge detection mass spectrometry: what’s the ‘big’ deal? LCGC North Am. 40, 125–127 (2022).

    Google Scholar 

  336. Amantonico, A., Urban, P. L. & Zenobi, R. Analytical techniques for single-cell metabolomics: state of the art and trends. Anal. Bioanal. Chem. 398, 2493–2504 (2010).

    Article  Google Scholar 

  337. Fujii, T. et al. Direct metabolomics for plant cells by live single-cell mass spectrometry. Nat. Protoc. 10, 1445–1456 (2015).

    Article  Google Scholar 

  338. Kandiah, M. & Urban, P. L. Advances in ultrasensitive mass spectrometry of organic molecules. Chem. Soc. Rev. 42, 5299–5322 (2013).

    Article  Google Scholar 

  339. Holden, D. T., Morato, N. M. & Cooks, R. G. Aqueous microdroplets enable abiotic synthesis and chain extension of unique peptide isomers from free amino acids. Proc. Natl Acad. Sci. USA 119, e2212642119 (2022).

    Article  Google Scholar 

  340. Poon, G. K., Bisset, G. M. & Mistry, P. Electrospray ionization mass spectrometry for analysis of low-molecular-weight anticancer drugs and their analogues. J. Am. Soc. Mass Spectrom. 4, 588–595 (1993).

    Article  Google Scholar 

  341. Kind, T. & Fiehn, O. Advances in structure elucidation of small molecules using mass spectrometry. Bioanal. Rev. 2, 23–60 (2010).

    Article  Google Scholar 

  342. Loo, J. A., Edmonds, C. G. & Smith, R. D. Primary sequence information from intact proteins by electrospray ionization tandem mass spectrometry. Science 248, 201–204 (1990).

    Article  ADS  Google Scholar 

  343. Thomas, B. & Akoulitchev, A. V. Mass spectrometry of RNA. Trends Biochem. Sci. 31, 173–181 (2006).

    Article  Google Scholar 

  344. Oberacher, H. & Pitterl, F. On the use of ESI-QqTOF-MS/MS for the comparative sequencing of nucleic acids. Biopolymers 91, 401–409 (2009).

    Article  Google Scholar 

  345. Domon, B. & Aebersold, R. Mass spectrometry and protein analysis. Science 312, 212–217 (2006).

    Article  ADS  Google Scholar 

  346. Nordhoff, E., Kirpekar, F. & Roepstorff, P. Mass spectrometry of nucleic acids. Mass Spectrom. Rev. 15, 67–138 (1996).

    Article  ADS  Google Scholar 

  347. van Duijn, E. et al. Monitoring macromolecular complexes involved in the chaperonin-assisted protein folding cycle by mass spectrometry. Nat. Methods 2, 371–376 (2005).

    Article  Google Scholar 

  348. Loo, J. A. Electrospray ionization mass spectrometry: a technology for studying non-covalent macromolecular complexes. Int. J. Mass Spectrom. 200, 175–186 (2000).

    Article  Google Scholar 

  349. Ifa, D. R., Wiseman, J. M., Song, Q. & Cooks, R. G. Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI). Int. J. Mass Spectrom. 259, 8–15 (2007).

    Article  Google Scholar 

  350. Wu, C., Dill, A. L., Eberlin, L. S., Cooks, R. G. & Ifa, D. R. Mass spectrometry imaging under ambient conditions. Mass Spectrom. Rev. 32, 218–243 (2013).

    Article  ADS  Google Scholar 

  351. Laskin, J. & Lanekoff, I. Ambient mass spectrometry imaging using direct liquid extraction techniques. Anal. Chem. 88, 52–73 (2016). A comprehensive review on different ambient MS imaging techniques, including those derived from ESI.

    Article  Google Scholar 

  352. Tracy, J. B. et al. Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. J. Am. Chem. Soc. 129, 6706–6707 (2007).

    Article  Google Scholar 

  353. Mann, M. The ever expanding scope of electrospray mass spectrometry — a 30 year journey. Nat. Commun. 10, 3744 (2019).

    Article  ADS  Google Scholar 

  354. Wang, Y.-W., Prabhu, G. R. D., Hsu, C.-Y. & Urban, P. L. Tuning electrospray ionization with low-frequency sound. J. Am. Soc. Mass Spectrom. 33, 1883–1890 (2022).

    Article  Google Scholar 

  355. Duft, D., Achtzehn, T., Müller, R., Huber, B. A. & Leisner, T. Rayleigh jets from levitated microdroplets. Nature 421, 128 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

P.L.U. acknowledges the National Science and Technology Council, Taiwan (grant numbers 110-2628-M-007-004-MY4, 109-2113-M-007-013-MY3, 111-2634-F-007-007 and 110-2811-M-007-513), the National Tsing Hua University (111QI009E1), the Frontier Research Center on Fundamental and Applied Sciences of Matters as well as the Featured Areas Research Center Programme within the framework of the Higher Education Sprout Project established by the Ministry of Education, Taiwan (111QR001I5).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.W. and G.R.D.P.); Experimentation (G.R.D.P., M.W., E.R.W. and P.L.U.); Results (M.W. and G.R.D.P.); Applications (G.R.D.P., E.R.W. and P.L.U.); Reproducibility and data deposition (P.L.U. and G.R.D.P.); Limitations and optimizations (G.R.D.P. and P.L.U.); Outlook (P.L.U. and G.R.D.P.) and Overview of the Primer (G.R.D.P., M.W., E.R.W. and P.L.U.).

Corresponding author

Correspondence to Pawel L. Urban.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Human Metabolome Database: https://hmdb.ca/

MASH explorer: https://labs.wisc.edu/gelab/MASH_Explorer/index.php

MassBank: http://www.massbank.jp/

MassBank-EU: https://massbank.eu/MassBank/

MassIVE: https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp

Mass Spectrometry Data Center: https://chemdata.nist.gov/dokuwiki/doku.php?id=start

MetaMorpheus: https://smith-chem-wisc.github.io/MetaMorpheus/

Metlin: https://massconsortium.com/

MoNA: https://mona.fiehnlab.ucdavis.edu/

MZmine: http://mzmine.github.io/

PeakInvestigator: https://www.veritomyx.com/PeakInvestigator.php

PRIDE: https://www.ebi.ac.uk/pride/

ProMass: https://www.enovatia.com/our-products/promass/

PubChem: https://pubchem.ncbi.nlm.nih.gov/

UniDec: http://unidec.chem.ox.ac.uk/

Supplementary information

Glossary

Charged residue model

A model to explain the ionization mechanism for electrospray droplets containing a single analyte, such as a globular protein, in which the charge present on the droplet surface is transferred to the analyte, as the solvent shell evaporates to dryness.

Collision cell

A zone inside a mass spectrometer in which gas-phase ions are accelerated and dissociated into fragments by energetically colliding the ions with neutral particles — for example, gaseous atoms or molecules (helium, argon, nitrogen) — or by interacting with electrons, or by absorbing photons (infrared or ultraviolet).

Coulombic jet fission

The process of ejecting small charged droplets from larger charged droplets owing to prevalence of electrostatic repulsion force over surface tension force.

Desolvation

The process of solvent evaporation from electrospray droplets and formation of dry ions.

Ionization chamber

A region at the front end of a mass spectrometer in which the ion source is located.

Ion suppression

Decrease of ionization efficiency of target analytes owing to the presence of interfering species in the sample.

Lorentz force

A force exerted on an ion while it is moving through an electric field and a magnetic field.

Multiply-charged ion

An ion with charge number greater than 1. Macromolecules form multiply-charged ions during the electrospray ionization process.

m/z value

The mass-to-charge ratio of an analyte measured using a mass spectrometer.

Nano-electrospray

Electrospray generated using a thin emitter, with a tip inner diameter in the order of a few micrometres, to produce a fine spray of primary droplets with size in the range of a few hundred nanometres.

Plume

Cloud of charged droplets projecting from Taylor cone.

Progeny droplets

A set of nanometre-sized secondary droplets produced during fission of the primary micrometre-sized electrospray droplets.

Resolving power

The ability of a mass analyser to distinguish two closely spaced peaks of different m/z values in a mass spectrum.

Taylor cone

Elongated liquid meniscus at the electrospray capillary outlet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, G.R.D., Williams, E.R., Wilm, M. et al. Mass spectrometry using electrospray ionization. Nat Rev Methods Primers 3, 23 (2023). https://doi.org/10.1038/s43586-023-00203-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00203-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing