Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach

Abstract

This protocol provides a method for quantitating the intracellular concentrations of endogenous metabolites in cultured cells. The cells are grown in stable isotope-labeled media to near-complete isotopic enrichment and then extracted in organic solvent containing unlabeled internal standards in known concentrations. The ratio of endogenous metabolite to internal standard in the extract is determined using mass spectrometry (MS). The product of this ratio and the unlabeled standard amount equals the amount of endogenous metabolite present in the cells. The cellular concentration of the metabolite can then be calculated on the basis of intracellular volume of the extracted cells. The protocol is exemplified using Escherichia coli and primary human fibroblasts fed uniformly with 13C-labeled carbon sources, with detection of 13C-assimilation by liquid chromatography–tandem MS. It enables absolute quantitation of several dozen metabolites over 1 week of work.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Schematic of potential mass spectrometry peak intensities obtained via Steps 2–6 for a 4 carbon compound after 13C labeling.
Figure 4: Creating filter culture from batch culture (Step 2A(vi)).
Figure 5
Figure 6: Quenching and extraction of a filter culture (Step 2A(x)).
Figure 7
Figure 8: Representative extracted ion chromatograms of UTP.

Similar content being viewed by others

References

  1. Rabinowitz, J.D. & Kimball, E. Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal. Chem. 79, 6167–6173 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Lu, W., Kwon, Y.K. & Rabinowitz, J.D. Isotope ratio-based profiling of microbial folates. J. Am. Soc. Mass Spectrom. 18, 898–909 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yuan, J., Fowler, W.U., Kimball, E., Lu, W. & Rabinowitz, J.D. Kinetic flux profiling of nitrogen assimilation in Escherichia coli. Nat. Chem. Biol. 2, 529–530 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Lu, W., Kimball, E. & Rabinowitz, J.D. A high-performance liquid chromatography-tandem mass spectrometry method for quantitation of nitrogen-containing intracellular metabolites. J. Am. Soc. Mass Spectrom. 17, 37–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Wu, L. et al. Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal. Biochem. 336, 164–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Mashego, M.R. et al. MIRACLE: mass isotopomer ratio analysis of U-C-13-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol. Bioeng. 85, 620–628 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Brauer, M.J. et al. Conservation of the metabolomic response to starvation across two divergent microbes. Proc. Natl. Acad. Sci. USA 103, 19302–19307 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Ikeda, T.P., Shauger, A.E. & Kustu, S. Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation. J. Mol. Biol. 259, 589–607 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Rabinowitz, J.D. Cellular metabolomics of Escherchia coli. Expert Rev. Proteomics 4, 187–198 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Villas-Boas, S. & Bruheim, P. Cold glycerol-saline: the promising quenching solution for accurate intracellular metabolite analysis of microbial cells. Anal. Biochem. 370, 87–97 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Wittmann, C., Kromer, J.O., Kiefer, P., Binz, T. & Heinzle, E. Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal. Biochem. 327, 135–139 (2004).

    Article  CAS  Google Scholar 

  12. Villas-Boas, S.G., Hojer-Pedersen, J., Akesson, M., Smedsgaard, J. & Nielsen, J. Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 22, 1155–1169 (2005).

    Article  CAS  Google Scholar 

  13. Maharjan, R.P. & Ferenci, T. Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal. Biochem. 313, 145–154 (2003).

    Article  PubMed  Google Scholar 

  14. Kimball, E. & Rabinowitz, J.D. Identifying decomposition products in extracts of cellular metabolites. Anal. Biochem. 358, 273–280 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meyer, R.C. et al. The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 104, 4759–4764 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Monton, M.R. & Soga, T. Metabolome analysis by capillary electrophoresis-mass spectrometry. J. Chromatogr. A 1168, 237–246 discussion 236 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Bajad, S.U. et al. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J. Chromatogr. A 1125, 76–88 (2006).

    Article  CAS  Google Scholar 

  18. Tolstikov, V.V., Lommen, A., Nakanishi, K., Tanaka, N. & Fiehn, O. Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics. Anal. Chem. 75, 6737–6740 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Maruska, A., Rocco, A., Kornysova, O. & Fanali, S. Synthesis and evaluation of polymeric continuous bed (monolithic) reversed-phase gradient stationary phases for capillary liquid chromatography and capillary electrochromatography. J. Biochem. Biophys. Methods 70, 47–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Horie, K. et al. Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography. J. Chromatogr. A 1164, 198–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Wilson, I.D. et al. HPLC-MS-based methods for the study of metabonomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 817, 67–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen, D.T. et al. High throughput liquid chromatography with sub-2 microm particles at high pressure and high temperature. J. Chromatogr. A 1167, 76–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Guillarme, D., Nguyen, D.T., Rudaz, S. & Veuthey, J.L. Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part I: isocratic separation. Eur. J. Pharm. Biopharm. 66, 475–482 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Yu, K., Little, D., Plumb, R. & Smith, B. High-throughput quantification for a drug mixture in rat plasma—a comparison of ultra performance liquid chromatography/tandem mass spectrometry with high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 20, 544–552 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Cai, S.S., Hanold, K.A. & Syage, J.A. Comparison of atmospheric pressure photoionization and atmospheric pressure chemical ionization for normal-phase LC/MS chiral analysis of pharmaceuticals. Anal. Chem. 79, 2491–2498 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Hu, Q. et al. The Orbitrap: a new mass spectrometer. J. Mass Spectrom 40, 430–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Wilson, S.D. & Horne, D.W. Evaluation of ascorbic acid in protecting labile folic acid derivatives. Proc. Natl. Acad. Sci. USA 80, 6500–6504 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Luo, B., Groenke, K., Takors, R., Wandrey, C. & Oldiges, M. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J. Chromatogr. A 1147, 153–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. van Winden, W.A. et al. Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of 13C-labeled primary metabolites. FEMS Yeast Res. 5, 559–568 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Coulier, L. et al. Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry. Anal. Chem. 78, 6573–6582 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Brown, A.F. & Dunn, G.A. Microinterferometry of the movement of dry matter in fibroblasts. J. Cell. Sci. 92 (Part 3): 379–389 (1989).

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Beckman Foundation, National Science Foundation–Dynamic Data-Driven Application Systems grant CNS-0540181, American Heart Association grant 0635188N, National Science Foundation CAREER award MCB-0643859, National Institutes of Health grant AI078063 and National Institutes of Health grant GM071508 for the Center of Quantitative Biology at Princeton University. We thank Wenyun Lu for contributing LC-MS expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua D Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, B., Yuan, J., Kimball, E. et al. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat Protoc 3, 1299–1311 (2008). https://doi.org/10.1038/nprot.2008.107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.107

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing