Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An ESI-MS method for characterization of native and modified oligonucleotides used for RNA interference and other biological applications

Abstract

RNA interference (RNAi) has become a powerful tool for investigating gene function, and, in addition, shows potential for the development of therapeutic agents. RNAi can be triggered in a variety of eukaryotic cells using small interfering RNA (siRNA), their double-stranded precursors (double-stranded RNA) and short hairpin precursors (shRNA). Here, we describe a protocol for analyzing these RNAs and their modifications using electrospray ionization mass spectrometry (ESI-MS). This protocol involves the desalting of nucleic acids using ammonium acetate precipitation, followed by characterization using ESI-MS. This protocol has been chiefly used for analyzing siRNAs and their chemical modifications, but it has also been used and can be applied to the analysis of a wide range of native and modified oligonucleotides. This protocol provides accurate information on molecular weight for a range of nucleic acids and can be completed in less than a day.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of modified and unmodified siRNAs and dsRNAs examined with mass spectrometry using this protocol.
Figure 2: Reconstructed ESI mass spectrum of a GFP-targeting siRNA (sense strand, 5′-GCA GCA CGA CUU CUU CAA GdTdT-3′; antisense strand, 5′-CUU GAA GAA GUC GUG CUG CdTdT-3′) containing a 5′-phosphate on the antisense strand.
Figure 3: Reconstructed ESI mass spectrum of a GFP-targeting siRNA (sense strand, 5′-GCA GCA CGA CUU CUU CAA GdTdT-3′; antisense strand, 5′-CUU GAA GAA GUC GUG CUG CdTdT-3′) containing a 5′-antisense phosphate after modification with a photolabile DMNPE group, as shown in Figure 1a.
Figure 4: Reconstructed ESI mass spectrum of a 21 mer oligonucleotide (sequence, 5′-CUU GAA GAA GUC GUG CUG CdTdT-3′) containing a C6 amino linker on the 5′-end in the presence of the same 21 mer oligonucleotide containing only a phosphate modification on the 5′-end of a known molecular weight as an internal standard.
Figure 5: Raw ESI mass spectrum (before mass reconstruction) of a GFP-targeting siRNA (sense strand, 5′-GCA GCA CGA CUU CUU CAA GdTdT-3′; antisense strand, 5′-CUU GAA GAA GUC GUG CUG CdTdT-3′) containing a 5′-antisense phosphate after modification with a photolabile DMNPE group, as shown in Figure 1a.

Similar content being viewed by others

References

  1. Elbashir, S.M., Lendeckel, W. & Tuschl, T. 'RNA interference is mediated by 21- and 22-nucleotide RNAs'. Genes Dev. 15, 188–200 (2001).

    Article  CAS  Google Scholar 

  2. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  3. Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. 'RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals'. Cell 101, 25–33 (2000).

    Article  CAS  Google Scholar 

  4. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  5. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    Article  CAS  Google Scholar 

  6. Paddison, P.J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004).

    Article  CAS  Google Scholar 

  7. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    Article  CAS  Google Scholar 

  8. Zimmermann, T.S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    Article  CAS  Google Scholar 

  9. Chiu, Y. & Rana, T.M. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048 (2003).

    Article  CAS  Google Scholar 

  10. Chiu, Y.L. & Rana, T.M. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell 10, 549–561 (2002).

    Article  CAS  Google Scholar 

  11. Choung, S., Kim, Y.J., Kim, S., Park, H.O. & Choi, Y.C. Chemical modifications of siRNAs to improve serum stability without loss of efficacy. Biochem. Biophys. Res. Commun. 342, 919–927 (2006).

    Article  CAS  Google Scholar 

  12. Czauderna, F. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716 (2003).

    Article  CAS  Google Scholar 

  13. Dande, P. et al. Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J. Med. Chem. 49, 1624–1634 (2006).

    Article  CAS  Google Scholar 

  14. Elmen, J. et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 33, 439–447 (2005).

    Article  CAS  Google Scholar 

  15. Fisher, M. et al. Inhibition of MDR1 expression with altritol-modified siRNAs. Nucleic Acids Res. 35, 1064–1074 (2007).

    Article  CAS  Google Scholar 

  16. Harborth, J. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev. 13, 83–105 (2003).

    Article  CAS  Google Scholar 

  17. Hoshika, S., Minakawa, N., Kamiya, H., Harashima, H. & Matsuda, A. RNA interference induced by siRNAs modified with 4′-thioribonucleosides in cultured mammalian cells. FEBS Lett. 579, 3115–3118 (2005).

    Article  CAS  Google Scholar 

  18. Li, Z.Y., Mao, H.B., Kallick, D.A. & Gorenstein, D.G. The effects of thiophosphate substitutions on native siRNA gene silencing. Biochem. Biophys. Res. Commun. 329, 1026–1030 (2005).

    Article  CAS  Google Scholar 

  19. Lorenz, C., Hadwiger, P., John, M., Vornlocher, H.P. & Unverzagt, C. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg. Med. Chem. Lett. 14, 4975–4977 (2004).

    Article  CAS  Google Scholar 

  20. Manoharan, M. RNA interference and chemically modified small interfering RNAs. Curr. Opin. Chem. Biol. 8, 570–579 (2004).

    Article  CAS  Google Scholar 

  21. Moschos, S.A. et al. Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug. Chem. 18, 1450–1459 (2007).

    Article  CAS  Google Scholar 

  22. Shah, S. & Friedman, S.H. Tolerance of RNA interference toward modifications of the 5′ antisense phosphate of small interfering RNA. Oligonucleotides 17, 35–43 (2007).

    Article  CAS  Google Scholar 

  23. Shah, S., Rangarajan, S. & Friedman, S.H. Light activated RNA interference. Angew. Chem. Int. Ed. Engl. 44, 1328–1332 (2005).

    Article  CAS  Google Scholar 

  24. Limbach, P.A., Crain, P.F. & Mccloskey, J.A. Molecular-mass measurement of intact ribonucleic-acids via electrospray-ionization quadrupole mass-spectrometry. J. Am. Soc. Mass Spectrom. 6, 27–39 (1995).

    Article  CAS  Google Scholar 

  25. Potier, N., Van Dorsselaer, A., Cordier, Y., Roch, O. & Bischoff, R. Negative electrospray ionization mass spectrometry of synthetic and chemically modified oligonucleotides. Nucleic Acids Res. 22, 3895–3903 (1994).

    Article  CAS  Google Scholar 

  26. Stults, J.T. & Marsters, J.C. Improved electrospray ionization of synthetic oligodeoxynucleotides. Rapid Commun. Mass Spectrom. 5, 359–363 (1991).

    Article  CAS  Google Scholar 

  27. Potier, N., Vandorsselaer, A., Cordier, Y., Roch, O. & Bischoff, R. Negative electrospray-ionization mass spectrometry of synthetic and chemically modified oligonucleotides. Nucleic Acids Res. 22, 3895–3903 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of the NIH is gratefully acknowledged. We thank Professor William Gutheil for curating the Q-trap instrument that was used to generate the data within this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon H Friedman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, S., Friedman, S. An ESI-MS method for characterization of native and modified oligonucleotides used for RNA interference and other biological applications. Nat Protoc 3, 351–356 (2008). https://doi.org/10.1038/nprot.2007.535

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.535

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing