Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

2-Nitroglycals: versatile intermediates for efficient and highly stereoselective base-catalyzed glycoside bond formations

Abstract

This protocol describes the O-glycosyl trichloroacetimidate-based glycosylation of protected galactal 1 as acceptor under Sn(OTf)2 catalysis to give disaccharide 4. Nitration of the galactal moiety using nitric acid–acetic acid as nitrating agent followed by base-promoted acetic acid elimination affords the 2-nitro derivative 6 in a one-pot procedure. These types of intermediates can be used in the stereoselective synthesis of glycosides via Michael-type addition of alcohols as nucleophiles to 2-nitroglycals. Here, the base-catalyzed α-selective addition of N-Boc-protected Ser and Thr esters (7a, b) is described, which leads stereoselectively to adducts 8a, b. Transformation into the corresponding 2a-acetylamino derivates 9a, b provides versatile mucin core 1 building blocks (the total time for synthesizing 9a, b starting from 1 to 2 is typically 7 d with an overall yield of 18–25%). Also various other types of nucleophiles are amenable to this Michael-type addition 2-nitroglycals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Michael-type addition of O-, N-, C-, S- and P-nucleophiles to 2-nitrogalactal as donor.
Figure 3

Similar content being viewed by others

References

  1. Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993).

    CAS  Google Scholar 

  2. Brockhausen, I. Pathways of O-glycan biosynthesis in cancer cells. Biochem. Biophys. Acta 1473, 67–95 (1999).

    Article  CAS  Google Scholar 

  3. Brocke, C. & Kunz, H. Glycosyl azides as building blocks in convergent syntheses of oligomeric lactosamine and Lewis(x) saccharides. Bioorg. Med. Chem. 5, 1–19 (1997).

    Google Scholar 

  4. Devine, P.L. & McKenzie, I.F. Mucins: structure, function, and associations with malignancy. Bioessays 14, 619–625 (1992).

    Article  CAS  Google Scholar 

  5. Gum, J.R. Jr. Human mucin glycoproteins: varied structures predict diverse properties and specific functions. Biochem. Soc. Trans. 23, 795–799 (1995).

    Article  CAS  Google Scholar 

  6. Tsuboi, S. & Fukuda, M. Roles of O-linked oligosaccharides in immune responses. Bioessays 23, 46–53 (2001).

    Article  CAS  Google Scholar 

  7. Danishefsky, S.J. & Allen, J.R. From the laboratory to the clinic: a retrospective on fullysynthetic carbohydrate-based anticancer vaccines. Angew. Chem. Int. Ed. Engl. 39, 836–863 (2000).

    Article  CAS  Google Scholar 

  8. Grogan, M.J., Pratt, M.R., Marcaurelle, L.A. & Bertozzi, C.R. Homogeneous glycopeptides and glycoproteins for biological investigation. Annu. Rev. Biochem. 71, 593–634 (2002).

    Article  CAS  Google Scholar 

  9. Paulsen, H. & Stenzel, W. Building units for oligosaccharides, IX. Stereoselective synthesis of α-glycosidically linked di- and oligosaccharides of 2-amino-2-deoxy-D-glucopyranose. Chem. Ber. 111, 2334–2347 (1978).

    Article  CAS  Google Scholar 

  10. Paulsen, H. & Stenzel, W. Building units for oligosaccharides, X. Synthesis of α-(1 → 4) and α-(1 → 3) linked disaccharides of 2-amino-2-deoxy-D-glucopyranose by the azide method. Chem. Ber. 111, 2348–2357 (1978).

    Article  CAS  Google Scholar 

  11. Paulsen, H., Kolar, C. & Stenzel, W. Building units for oligosaccharides, XI. Synthesis of α glycosidically linked di- and oligosaccharides of 2-amino-2-deoxy-D-galactopyranose. Chem. Ber. 111, 2358–2369 (1978).

    Article  CAS  Google Scholar 

  12. Paulsen, H. & Kolar, C. Building units for oligosaccharides. XVI. Synthesis of the oligosaccharide determinants of the blood-group substances of type 1 of the ABH system. Chem. Ber. 112, 3190–3202 (1979).

    Article  CAS  Google Scholar 

  13. Ferrari, B. & Pavia, A.A. The synthesis of derivatives of 3-O-(2-acetamido-2-deoxy-α-D galactopyranosyl)-L-serine and -L-threonine. Carbohydr. Res. 79, C1–C7 (1980).

    Article  CAS  Google Scholar 

  14. Paulsen, H. & Hölck, J.P. Synthesis of the glycopeptide O-beta-D-galactopyranosyl-(1 → 3) O-(2-acetamido-2-desoxy-alpha-D-galactopyranosyl)-(1 → 3)-L-serine and -L-threonine. Carbohydr. Res. 109, 89–107 (1982).

    Article  CAS  Google Scholar 

  15. Grundler, G. & Schmidt, R.R. Glycosyl imidates, 13. Application of the trichloroacetimidate procedure to 2-azidoglucose and 2-azidogalactose derivatives. Liebigs Ann. Chem. 1826–1847 (1984).

  16. Kinzy, W. & Schmidt, R.R. Glycosylimidates. Part 24. Application of the trichloroacetimidate method to the synthesis of glycopeptides of the mucin type containing β-D-Galp-(1 → 3)-D-GalpNAc unit. Carbohydr. Res. 164, 265–276 (1987).

    Article  CAS  Google Scholar 

  17. Paulsen, H., Rauwald, W. & Weichert, U. Building units of oligosaccharides. Glycosidation of oligosaccharide thioglycosides to O-glycoprotein segments. Liebigs Ann. 75–86 (1988).

  18. Kinzy, W. & Schmidt, R.R. Glycosylimidates. Part 39. Synthesis of glycopeptides of the mucin type containing a β-D-GlcpNAc-(1 → 3)-D-GalpNAc unit. Carbohydr. Res. 193, 33–47 (1989).

    Article  CAS  Google Scholar 

  19. Nakahara, Y., Iijima, H., Sibayama, S. & Ogawa, T. Synthetic studies on cell surface glycans. 76. A highly stereoselective synthesis of di- and trimeric sialoxyl-Tn epitope: a partial structure of glycophorin A. Tetrahedron Lett. 31, 6897–6900 (1990).

    Article  CAS  Google Scholar 

  20. Rademann, J. & Schmidt, R.R. Solid-phase synthesis of a glycosylated hexapeptide of human sialophorin, using the trichloroacetimidate method. Carbohydr. Res. 269, 217–225 (1995).

    Article  CAS  Google Scholar 

  21. Chen, X.T., Sames, D. & Danishefsky, S.J. Exploration of modalities in building α-O-linked systems through glycal assembly: a total synthesis of the mucin-related F1α antigen. J. Am. Chem. Soc. 120, 7760–7769 (1998).

    Article  CAS  Google Scholar 

  22. Winterfeld, G.A. & Schmidt, R.R. Nitroglycal concatenation: a broadly applicable and efficient approach to the synthesis of complex O-glycans. Angew. Chem. Int. Ed. Engl. 40, 2654–2657 (2001).

    Article  CAS  Google Scholar 

  23. Winterfeld, G.A., Khodair, A.I. & Schmidt, R.R. O-glycosyl amino acids by 2-nitrogalactal concatenation-synthesis of a mucin-type O-glycan. Eur. J. Org. Chem. 6, 1009–1021 (2003).

    Article  Google Scholar 

  24. Khodair, A.I., Winterfeld, G.A. & Schmidt, R.R. Conjugate addition of phenols to 2-nitrogalactal-synthesis of O-(2-acetamido-2-deoxygalactosyl)-tyrosine. Eur. J. Org. Chem. 10, 1847–1852 (2003).

    Article  Google Scholar 

  25. Geiger, J. et al. Glycosylation and 2-nitroglycal concatenation, a powerful combination for mucin core structure synthesis. J. Org. Chem. 72, 4367–4377 (2007).

    Article  CAS  Google Scholar 

  26. Das, J. & Schmidt, R.R. Convenient glycoside synthesis of amino sugars. Michael-type addition to 2-nitro-D-galactal. Eur. J. Org. Chem. 8, 1609–1613 (1998).

    Article  Google Scholar 

  27. Barroca, N. & Schmidt, R.R. 2-Nitro thioglycoside donors: versatile precursors of β-D glycosides of aminosugars. Org. Lett. 6, 1551–1554 (2004).

    Article  CAS  Google Scholar 

  28. Geiger, J., Barroca, N. & Schmidt, R.R. Efficient methods for glycosidation with glycals—a key intermediate for the synthesis of mucin core 1-type O-glycan. Synlett 5, 836–840 (2004).

    Google Scholar 

  29. Pachamuthu, K., Figueroa-Perez, I., Ali, I.A.I. & Schmidt, R.R. Synthesis of glycosyl phosphonates by Michael-type addition to 2-nitroglycals. Eur. J. Org. Chem. 19, 3959–3961 (2004).

    Article  Google Scholar 

  30. Pachamuthu, K. & Schmidt, R.R. Diels-Alder reaction of 2-nitro glycals: a new route to the synthesis of benzopyrans. Synlett 9, 1355–1357 (2003).

    Google Scholar 

  31. Khodair, A.I., Pachamuthu, K. & Schmidt, R.R. A convenient route to O-glycosyl lactates via conjugate addition to 2-nitroglycals: ring closure to novel pyrano[2.3-b][1,4]-oxazines. Synthesis 1, 53–58 (2004).

    Google Scholar 

  32. Pachamuthu, K., Gupta, A., Das, J., Schmidt, R.R. & Vankar, Y.D. An easy route to 2-amino β-C-glycosides by conjugate addition to 2-nitroglycals. Eur. J. Org. Chem. 9, 1479–1483 (2002).

    Article  Google Scholar 

  33. Winterfeld, G.A., Das, J. & Schmidt, R.R. Convenient synthesis of nucleosides of 2-deoxy-2-nitro-D-galactose and N-acetyl-D-galactosamine. Eur. J. Org. Chem. 17, 3047–3050 (2000).

    Article  Google Scholar 

  34. Reddy, B.G. & Vankar, Y.D. The synthesis of hybrids of D-galactose with 1-deoxynojirimycin analogs as glycosidase inhibitors. Angew. Chem. Int. Ed. Engl. 44, 2001–2004 (2005).

    Article  CAS  Google Scholar 

  35. Jayakanthan, K. & Vankar, Y.D. Hybrid sugars as glycosidase inhibitors en route to 2-deoxy-2-amino C-glycosyl amino acids. Tetrahedron Lett. 47, 8667–8671 (2006).

    Article  CAS  Google Scholar 

  36. Gervay, J., Peterson, J.M., Oriyama, T. & Danishefsky, S.J. An unexpected sialylation: total syntheses of ganglioside GM4 and a positional isomer. J. Org. Chem. 58, 5465–5468 (1993).

    Article  CAS  Google Scholar 

  37. Sakai, K., Nakahara, Y. & Ogawa, T. Synthetic studies on plant cell wall glycans. Part 8. Total synthesis of nonasaccharide repeating unit of plant cell wall xyloglucan: an endogenous hormone which regulates cell growth. Tetrahedron Lett. 31, 3035–3038 (1990).

    Article  CAS  Google Scholar 

  38. Oppolzer, W. & Tamura, O. Asymmetric synthesis of α-amino acids and α-N-hydroxyamino acids via electrophilic amination of bornanesultam-derived enolates with 1-chloro-1-nitrosocyclohexane. Tetrahedron Lett. 31, 991–994 (1990).

    Article  CAS  Google Scholar 

  39. Gowda, S., Gowda, B.K.K. & Gowda, D.C. Hydrazinium monoformate: a new hydrogen donor. Selective reduction of nitro compounds catalyzed by commercial zinc dust. Synth. Commun. 33, 281–289 (2003).

    Article  CAS  Google Scholar 

  40. Nishimura, S. Raney nickel and platinized Raney nickel with higher catalytic activities. Bull. Chem. Soc. Jpn. 32, 61–64 (1959).

    Article  CAS  Google Scholar 

  41. Geiger, J. Dissertation, Synthese von Mucin-Typ Core-Strukturen und Antifreeze- Glycoproteinfragmenten, Universität Konstanz, 2005 (Hartung-Gorre Verlag, Konstanz, Germany, 2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, B., Schmidt, R. 2-Nitroglycals: versatile intermediates for efficient and highly stereoselective base-catalyzed glycoside bond formations. Nat Protoc 3, 114–121 (2008). https://doi.org/10.1038/nprot.2007.495

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.495

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing