Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Laser-capture microdissection

Abstract

Deciphering the cellular and molecular interactions that drive disease within the tissue microenvironment holds promise for discovering drug targets of the future. In order to recapitulate the in vivo interactions thorough molecular analysis, one must be able to analyze specific cell populations within the context of their heterogeneous tissue microecology. Laser-capture microdissection (LCM) is a method to procure subpopulations of tissue cells under direct microscopic visualization. LCM technology can harvest the cells of interest directly or can isolate specific cells by cutting away unwanted cells to give histologically pure enriched cell populations. A variety of downstream applications exist: DNA genotyping and loss-of-heterozygosity (LOH) analysis, RNA transcript profiling, cDNA library generation, proteomics discovery and signal-pathway profiling. Herein we provide a thorough description of LCM techniques, with an emphasis on tips and troubleshooting advice derived from LCM users. The total time required to carry out this protocol is typically 1–1.5 h.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: PixCell IIe Laser Capture Microdissection instrument.
Figure 2: Principles of laser-capture microdissection.
Figure 3: Schematic of UV laser microdissection.
Figure 4: Tissue stability and processing.
Figure 5: Example applications of LCM technology.
Figure 6: Tissue placement on slide for effective microdissection.
Figure 7: Scheme for extraction of protein from multiple LCM caps.

References

  1. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS  PubMed  Article  Google Scholar 

  2. Chung, G.G., Kielhorn, E.P. & Rimm, D.L. Subjective differences in outcome are seen as a function of the immunohistochemical method used on a colorectal cancer tissue microarray. Clin. Colorectal Cancer 1, 237–242 (2002).

    PubMed  Article  Google Scholar 

  3. Chung, C.H., Bernard, P.S. & Perou, C.M. Molecular portraits and the family tree of cancer. Nat. Genet. 32 (Suppl.), 533–540 (2002).

    CAS  PubMed  Article  Google Scholar 

  4. Wulfkuhle, J.D. et al. Proteomic approaches to the diagnosis, treatment, and monitoring of cancer. Adv. Exp. Med. Biol. 532, 59–68 (2003).

    CAS  PubMed  Article  Google Scholar 

  5. Wulfkuhle, J.D. et al. Proteomics of human breast ductal carcinoma in situ. Cancer Res. 62, 6740–6749 (2002).

    CAS  PubMed  Google Scholar 

  6. Liotta, L.A. & Kohn, E.C. The microenvironment of the tumour-host interface. Nature 411, 375–379 (2001).

    CAS  PubMed  Article  Google Scholar 

  7. Liotta, L.A. & Kohn, E.C. Stromal therapy: the next step in ovarian cancer treatment. J. Natl. Cancer Inst. 94, 1113–1114 (2002).

    PubMed  Article  Google Scholar 

  8. Imbeaud, S. & Auffray, C. 'The 39 steps' in gene expression profiling: critical issues and proposed best practices for microarray experiments. Drug Discov. Today 10, 1175–1182 (2005).

    CAS  PubMed  Article  Google Scholar 

  9. Imbeaud, S. et al. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res. 33, e56 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  10. Liotta, L.A. & Stracke, M.L. Tumor invasion and metastases: biochemical mechanisms. Cancer Treat. Res. 40, 223–238 (1988).

    CAS  PubMed  Article  Google Scholar 

  11. Iyengar, P. et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J. Clin. Invest. 115, 1163–1176 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Geho, D.H., Bandle, R.W., Clair, T. & Liotta, L.A. Physiological mechanisms of tumor-cell invasion and migration. Physiology (Bethesda) 20, 194–200 (2005).

    CAS  Google Scholar 

  13. Stracke, M.L., Murata, J., Aznavoorian, S. & Liotta, L.A. The role of the extracellular matrix in tumor cell metastasis. In Vivo 8, 49–58 (1994).

    CAS  PubMed  Google Scholar 

  14. Wada, K. et al. Requirement of cell interactions through adhesion molecules in the early phase of T cell development. Cell. Immunol. 170, 11–19 (1996).

    CAS  PubMed  Article  Google Scholar 

  15. Chan, S. et al. The use of laser capture microdissection (LCM) and quantitative polymerase chain reaction to define thyroid hormone receptor expression in human 'term' placenta. Placenta 25, 758–762 (2004).

    CAS  PubMed  Article  Google Scholar 

  16. Vogt, P.M. et al. Significant angiogenic potential is present in the microenvironment of muscle flaps in humans. J. Reconstr. Microsurg. 21, 517–523 (2005).

    PubMed  Article  Google Scholar 

  17. Wulfkuhle, J.D. et al. Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics 3, 2085–2090 (2003).

    CAS  PubMed  Article  Google Scholar 

  18. Simone, N.L. et al. Laser capture microdissection: beyond functional genomics to proteomics. Mol. Diagn. 5, 301–307 (2000).

    CAS  PubMed  Article  Google Scholar 

  19. Sheehan, K.M. et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol. Cell Proteomics (2005).

  20. Petricoin, E.F. et al. Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J. Clin. Oncol. (2005).

  21. Emmert-Buck, M.R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    CAS  PubMed  Article  Google Scholar 

  22. Bonner, R.F. et al. Laser capture microdissection: molecular analysis of tissue. Science 278, 1481–1483 (1997).

    CAS  PubMed  Article  Google Scholar 

  23. Kolble, K. The LEICA microdissection system: design and applications. J. Mol. Med. 78, B24–B25 (2000).

    CAS  PubMed  Google Scholar 

  24. Micke, P., Ostman, A., Lundeberg, J. & Ponten, F. Laser-assisted cell microdissection using the PALM system. Methods Mol. Biol. 293, 151–166 (2005).

    CAS  PubMed  Google Scholar 

  25. Schutze, K. et al. Cut out or poke in–the key to the world of single genes: laser micromanipulation as a valuable tool on the look-out for the origin of disease. Genet. Anal. 14, 1–8 (1997).

    CAS  PubMed  Article  Google Scholar 

  26. Schutze, K., Posl, H. & Lahr, G. Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine. Cell. Mol. Biol. 44, 735–746 (1998).

    CAS  PubMed  Google Scholar 

  27. Schermelleh, L. et al. Laser microdissection and laser pressure catapulting for the generation of chromosome-specific paint probes. Biotechniques 27, 362–367 (1999).

    CAS  PubMed  Article  Google Scholar 

  28. Kraft, T. Compact, robust lasers suit biotechnology applications. Biophotonics Intl. July, 44–46 (2004).

    Google Scholar 

  29. Buckanovich, R.J. et al. Use of immuno-LCM to identify the in situ expression profile of cellular constituents of the tumor microenvironment. Cancer Biol. Ther. published online 9 June (2006).

  30. Nakazono, M., Qiu, F., Borsuk, L.A. & Schnable, P.S. Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15, 583–596 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Xiang, C.C. et al. Using DSP, a reversible cross-linker, to fix tissue sections for immunostaining, microdissection and expression profiling. Nucleic Acids Res. 32, e185 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Namimatsu, S., Ghazizadeh, M. & Sugisaki, Y. Reversing the effects of formalin fixation with citraconic anhydride and heat: a universal antigen retrieval method. J. Histochem. Cytochem. 53, 3–11 (2005).

    CAS  PubMed  Article  Google Scholar 

  33. Fink, L., Kwapiszewska, G., Wilhelm, J. & Bohle, R.M. Laser-microdissection for cell type- and compartment-specific analyses on genomic and proteomic level. Exp. Toxicol. Pathol. (2006).

  34. Belluco, C. et al. Kinase substrate protein microarray analysis of human colon cancer and hepatic metastasis. Clin. Chim. Acta 357, 180–183 (2005).

    CAS  PubMed  Article  Google Scholar 

  35. Gillespie, J.W. et al. The role of tissue microdissection in cancer research. Cancer J. 7, 32–39 (2001).

    CAS  PubMed  Google Scholar 

  36. Simone, N.L. et al. Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am. J. Pathol. 156, 445–452 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Gulmann, C. et al. Proteomic analysis of apoptotic pathways reveals prognostic factors in follicular lymphoma. Clin. Cancer Res. 11, 5847–5855 (2005).

    CAS  PubMed  Article  Google Scholar 

  38. Grubb, R.L. et al. Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics 3, 2142–2146 (2003).

    CAS  PubMed  Article  Google Scholar 

  39. Elliott, K. et al. Use of laser microdissection greatly improves the recovery of DNA from sperm on microscope slides. Forensic Sci. Int. 137, 28–36 (2003).

    CAS  PubMed  Article  Google Scholar 

  40. Emmert-Buck, M.R. et al. Molecular profiling of clinical tissues specimens: feasibility and applications. J. Mol. Diagn. 2, 60–66 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Chen, X. et al. Gene expression patterns in human liver cancers. Mol. Biol. Cell 13, 1929–1939 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. DiMartino, D. et al. Laser microdissection and DNA typing of cells from single hair follicles. Forensic Sci. Int. 146 (Suppl.), S155–S157 (2004).

    CAS  Article  Google Scholar 

  43. Anslinger, K., Bayer, B., Mack, B. & Eisenmenger, W. Sex-specific fluorescent labelling of cells for laser microdissection and DNA profiling. Int. J. Legal Med. published online 18 March (2006) (DOI:10.1007/S00414-005-0065-7).

  44. Nawshad, A., LaGamba, D., Olsen, B.R. & Hay, E.D. Laser capture microdissection (LCM) for analysis of gene expression in specific tissues during embryonic epithelial-mesenchymal transformation. Dev. Dyn. 230, 529–534 (2004).

    CAS  PubMed  Article  Google Scholar 

  45. Klitgaard, K. et al. Laser capture microdissection of bacterial cells targeted by fluorescence in situ hybridization. Biotechniques 39, 864–868 (2005).

    CAS  PubMed  Article  Google Scholar 

  46. Ranjit, N. et al. A survey of the intestinal transcriptomes of the hookworms, Necator americanus and Ancylostoma caninum, using tissues isolated by laser microdissection microscopy. Int. J. Parasitol. 36, 701–710 (2006).

    CAS  PubMed  Article  Google Scholar 

  47. Raab, T. et al. FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase. Plant Cell 18, 1023–1037 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Hartmann, S. et al. Genetic imprinting during impaired spermatogenesis. Mol. Hum. Reprod. (2006).

  49. Brown, M.R. et al. Allelic loss on chromosome arm 8p: analysis of sporadic epithelial ovarian tumors. Gynecol. Oncol. 74, 98–102 (1999).

    CAS  PubMed  Article  Google Scholar 

  50. Chandrasekharappa, S.C. et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276, 404–407 (1997).

    CAS  PubMed  Article  Google Scholar 

  51. Chuaqui, R., Silva, M. & Emmert-Buck, M. Allelic deletion mapping on chromosome 6q and X chromosome inactivation clonality patterns in cervical intraepithelial neoplasia and invasive carcinoma. Gynecol. Oncol. 80, 364–371 (2001).

    CAS  PubMed  Article  Google Scholar 

  52. Sabah, M., Cummins, R., Leader, M. & Kay, E. Loss of p16INK4A expression is associated with alleic imbalance/loss of heterozygosity of chromosome 9p21 in microdissected synovial sarcomas. Virchows Arch. 447, 842–848 (2005).

    CAS  PubMed  Article  Google Scholar 

  53. Takeshima, Y. et al. Heterogeneous genetic alterations in ovarian mucinous tumors: application and usefulness of laser capture microdissection. Hum. Pathol. 32, 1203–1208 (2001).

    CAS  PubMed  Article  Google Scholar 

  54. Kaserer, K. et al. Construction of cDNA libraries from microdissected benign and malignant thyroid tissue. Lab. Invest. 82, 1707–1714 (2002).

    CAS  PubMed  Article  Google Scholar 

  55. Leethanakul, C. et al. Gene expression profiles in squamous cell carcinomas of the oral cavity: use of laser capture microdissection for the construction and analysis of stage-specific cDNA libraries. Oral Oncol. 36, 474–483 (2000).

    CAS  PubMed  Article  Google Scholar 

  56. Kinnecom, K. & Pachter, J.S. Selective capture of endothelial and perivascular cells from brain microvessels using laser capture microdissection. Brain Res. Brain Res. Protoc. 16, 1–9 (2005).

    CAS  PubMed  Article  Google Scholar 

  57. Pagedar, N.A. et al. Gene expression analysis of distinct populations of cells isolated from mouse and human inner ear FFPE tissue using laser capture microdissection—a technical report based on preliminary findings. Brain Res. (2006) (DOI:10.1016/j.brainres.2006.01.0S7).

  58. Jin, L. et al. Detection of fusion gene transcripts in fresh-frozen and formalin-fixed paraffin-embedded tissue sections of soft-tissue sarcomas after laser capture microdissection and rt-PCR. Diagn. Mol. Pathol. 12, 224–230 (2003).

    CAS  PubMed  Article  Google Scholar 

  59. Yao, F. et al. Microarray analysis of fluoro-gold labeled rat dopamine neurons harvested by laser capture microdissection. J. Neurosci. Methods 143, 95–106 (2005).

    CAS  PubMed  Article  Google Scholar 

  60. Paweletz, C.P. et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989 (2001).

    CAS  PubMed  Article  Google Scholar 

  61. Liotta, L.A. et al. Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 3, 317–325 (2003).

    CAS  PubMed  Article  Google Scholar 

  62. Ornstein, D.K. et al. Characterization of intracellular prostate-specific antigen from laser capture microdissected benign and malignant prostatic epithelium. Clin. Cancer Res. 6, 353–356 (2000).

    CAS  PubMed  Google Scholar 

  63. Jones, M.B. et al. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2, 76–84 (2002).

    CAS  PubMed  Article  Google Scholar 

  64. Martinet, W. et al. Western blot analysis of a limited number of cells: a valuable adjunct to proteome analysis of paraffin wax-embedded, alcohol-fixed tissue after laser capture microdissection. J. Pathol. 202, 382–388 (2004).

    CAS  PubMed  Article  Google Scholar 

  65. Haqqani, A.S. et al. Characterization of vascular protein expression patterns in cerebral ischemia/reperfusion using laser capture microdissection and ICAT-nanoLC-MS/MS. FASEB J. 19, 1809–1821 (2005).

    CAS  PubMed  Article  Google Scholar 

  66. Melle, C. et al. Detection and identification of heat shock protein 10 as a biomarker in colorectal cancer by protein profiling. Proteomics 6, 2600–2608 (2006).

    CAS  PubMed  Article  Google Scholar 

  67. Paweletz, C.P., Liotta, L.A. & Petricoin, E.F., III . New technologies for biomarker analysis of prostate cancer progression: laser capture microdissection and tissue proteomics. Urology 57, 160–163 (2001).

    CAS  PubMed  Article  Google Scholar 

  68. Fend, F. et al. Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am. J. Pathol. 154, 61–66 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Murakami, H., Liotta, L. & Star, R.A. I.F.-L.C.M. laser capture microdissection of immunofluorescently defined cells for mRNA analysis rapid communication. Kidney Int. 58, 1346–1353 (2000).

    CAS  PubMed  Article  Google Scholar 

  70. Rupp, C. et al. Laser capture microdissection of epithelial cancers guided by antibodies against fibroblast activation protein and endosialin. Diagn. Mol. Pathol. 15, 35–42 (2006).

    CAS  PubMed  Article  Google Scholar 

  71. Mojsilovic-Petrovic, J. et al. Development of rapid staining protocols for laser-capture microdissection of brain vessels from human and rat coupled to gene expression analyses. J. Neurosci. Methods 133, 39–48 (2004).

    CAS  PubMed  Article  Google Scholar 

  72. Hunter, F. et al. Rhodamine-RCA in vivo labeling guided laser capture microdissection of cancer functional angiogenic vessels in a murine squamous cell carcinoma mouse model. Mol. Cancer 5, 5 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. Prieto, D.A. et al. Liquid Tissue: proteomic profiling of formalin-fixed tissues. Biotechniques (Suppl.): 32–35 (2005).

  74. Tangrea, M.A. et al. Expression microdissection: operator-independent retrieval of cells for molecular profiling. Diagn. Mol. Pathol. 13, 207–212 (2004).

    PubMed  Article  Google Scholar 

  75. Gillespie, J.W. et al. Evaluation of non-formalin tissue fixation for molecular profiling studies. Am. J. Pathol. 160, 449–457 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Mouledous, L. et al. Navigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samples. Proteomics 3, 610–615 (2003).

    CAS  PubMed  Article  Google Scholar 

  77. Wong, M.H. et al. Genetic mosaic analysis based on Cre recombinase and navigated laser capture microdissection. Proc. Natl. Acad. Sci. USA 97, 12601–12606 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. Arcturus Bioscience, Inc. User Guide Veritas Microdissection Instrument. Version A. (Arcturus Bioscience, Inc., Mountain View, California, USA, 2004).

  79. Agar, N.S., Halliday, G.M., Barnetson, R.S. & Jones, A.M. A novel technique for the examination of skin biopsies by laser capture microdissection. J. Cutan. Pathol. 30, 265–270 (2003).

    CAS  PubMed  Article  Google Scholar 

  80. Roy, S. et al. Transcriptome analysis of the ischemia-reperfused remodeling myocardium: temporal changes in inflammation and extracellular matrix. Physiol. Genomics (2006), in press.

  81. Upson, J.J. et al. Optimized procedures for microarray analysis of histological specimens processed by laser capture microdissection. J. Cell. Physiol. 201, 366–373 (2004).

    CAS  PubMed  Article  Google Scholar 

  82. Obiakor, H. et al. A comparison of hydraulic and laser capture microdissection methods for collection of single B cells, PCR, and sequencing of antibody VDJ. Anal. Biochem. 306, 55–62 (2002).

    CAS  PubMed  Article  Google Scholar 

  83. Suarez-Quian, C.A. et al. Laser capture microdissection of single cells from complex tissues. Biotechniques 26, 328–335 (1999).

    CAS  PubMed  Article  Google Scholar 

  84. Keays, K.M. et al. Laser capture microdissection and single-cell RT-PCR without RNA purification. J. Immunol. Methods 302, 90–98 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Poznanovic, S. et al. Differential radioactive proteomic analysis of microdissected renal cell carcinoma tissue by 54 cm isoelectric focusing in serial immobilized pH gradient gels. J. Proteome Res. 4, 2117–2125 (2005).

    CAS  PubMed  Article  Google Scholar 

  86. Ai, J. et al. Proteome analysis of hepatocellular carcinoma by laser capture microdissection. Proteomics 6, 538–546 (2006).

    CAS  PubMed  Article  Google Scholar 

  87. Ornstein, D.K. et al. Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines. Electrophoresis 21, 2235–2242 (2000).

    CAS  PubMed  Article  Google Scholar 

  88. Lee, J.R. et al. Differential protein analysis of spasomolytic polypeptide expressing metaplasia using laser capture microdissection and two-dimensional difference gel electrophoresis. Appl. Immunohistochem. Mol. Morphol. 11, 188–193 (2003).

    CAS  PubMed  Article  Google Scholar 

  89. Li, C. et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol. Cell. Proteomics 3, 399–409 (2004).

    CAS  PubMed  Article  Google Scholar 

  90. Baker, H. et al. Proteome-wide analysis of head and neck squamous cell carcinomas using laser-capture microdissection and tandem mass spectrometry. Oral Oncol. 41, 183–199 (2005).

    CAS  PubMed  Article  Google Scholar 

  91. de Groot, C.J. et al. Peptide patterns of laser dissected human trophoblasts analyzed by matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. Proteomics 5, 597–607 (2005).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank J. Milia, A. Malekafzali, D. Choiniere, M. Bellamy and T. Taylor for consistently informative discussions regarding LCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance A Liotta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Espina, V., Wulfkuhle, J., Calvert, V. et al. Laser-capture microdissection. Nat Protoc 1, 586–603 (2006). https://doi.org/10.1038/nprot.2006.85

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.85

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing