Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Collection of lymph-borne dendritic cells in the rat

Abstract

Dendritic cells (DCs) are crucial in immune induction. Not only do they collect antigens in peripheral tissues, and transport and process them for presentation to lymphocytes in draining lymph nodes, but they also regulate the immune response by modulating T-cell differentiation. Intestinal and hepatic DCs migrating in lymph can be collected from rats under near-physiological conditions. Initially, the mesenteric or celiac lymph nodes are removed from young rats (30 min). The afferent and efferent lymph vessels subsequently heal, permitting DCs to enter the thoracic duct. After at least 6 wk, the duct is cannulated (40 min). Lymph can be collected for up to 48 h. DCs can subsequently be identified, enriched and sorted to high degrees of purity. This two-stage technique generates large numbers of immunologically relevant DCs under near-physiological conditions. Lymph collection requires 2–3 h per animal over 6 wk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specialist equipment for thoracic duct cannulation.
Figure 2: Animals shaved and arranged as if for surgery.
Figure 3: Mesenteric lymphadenectomy.
Figure 4: Thoracic duct cannulation.
Figure 5: Flow cytometry of DCs from lymph.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  2. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  Google Scholar 

  3. Turnbull, E. & MacPherson, G. Immunobiology of dendritic cells in the rat. Immunol. Rev. 184, 58–68 (2001).

    Article  CAS  Google Scholar 

  4. MacPherson, G., Kushnir, N. & Wykes, M. Dendritic cells, B cells and the regulation of antibody synthesis. Immunol. Rev. 172, 325–334 (1999).

    Article  CAS  Google Scholar 

  5. Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3, 1135–1141 (2002).

    Article  CAS  Google Scholar 

  6. Randolph, G.J., Inaba, K., Robbiani, D.F., Steinman, R.M. & Muller, W.A. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753–761 (1999).

    Article  CAS  Google Scholar 

  7. Randolph, G.J., Sanchez Schmitz, G., Liebman, R.M. & Schakel, K. The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J. Exp. Med. 196, 517–527 (2002).

    Article  CAS  Google Scholar 

  8. Yrlid, U., Jenkins, C.D. & MacPherson, G.G. Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions. J. Immunol. 176, 4155–4162 (2006).

    Article  CAS  Google Scholar 

  9. Yoffey, J.M. & Courtice, C. Lymphatics, Lymph and the Lymphomyeloid Complex, 548 (Academic Press, London, New York, 1970).

    Google Scholar 

  10. Pugh, C.W., MacPherson, G.G. & Steer, H.W. Characterization of nonlymphoid cells derived from rat peripheral lymph. J. Exp. Med. 157, 1758–1779 (1983).

    Article  CAS  Google Scholar 

  11. Smith, I.B., McIntosh, G.H. & Morris, B. The traffic of cells through tissues: a study of peripheral lymph in sheep. J. Anat. 107, 87–100 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bollman, J.L., Cain, J.C. & Grindley, J.H. Techniques for the collection of lymph from the liver, small intestine or thoracic duct of the rat. J. Lab. Clin. Med. 33, 1349 (1948).

    CAS  PubMed  Google Scholar 

  13. Gowans, J.L. The recirculation of lymphocytes from blood to lymph in the rat. J. Physiol. 146, 54 (1959).

    Article  CAS  Google Scholar 

  14. Sanders, A.G. & Florey, H.W. The effects of the removal of lymphoid tissue. Brit. J. Exp. Pathol. 21, 275 (1940).

    Google Scholar 

  15. MacPherson, G.G. Properties of lymph-borne (veiled) dendritic cells in culture. I. Modulation of phenotype, survival and function: partial dependence on GM-CSF. Immunology 68, 102–107 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, L.M. & MacPherson, G.G. Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo. J. Exp. Med. 177, 1299–1307 (1993).

    Article  CAS  Google Scholar 

  17. Liu, L.M. & MacPherson, G.G. Antigen processing: cultured lymph-borne dendritic cells can process and present native protein antigens. Immunology 84, 241–246 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, L.M., Zhang, M., Jenkins, C. & MacPherson, G.G. Dendritic cell heterogeneity in vivo: two functionally different dendritic cell populations in rat intestinal lymph can be distinguished by CD4 expression. J. Immunol. 161, 1146–1155 (1998).

    CAS  PubMed  Google Scholar 

  19. Huang, F.P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    Article  CAS  Google Scholar 

  20. Wykes, M. & MacPherson, G. Dendritic cell-B-cell interaction: dendritic cells provide B cells with CD40-independent proliferation signals and CD40-dependent survival signals. Immunology 100, 1–3 (2000).

    Article  CAS  Google Scholar 

  21. Huang, F.P., Farquhar, C.F., Mabbott, N.A., Bruce, M.E. & MacPherson, G.G. Migrating intestinal dendritic cells transport PrP(Sc) from the gut. J. Gen. Virol. 83, 267–71 (2002).

    Article  CAS  Google Scholar 

  22. Turnbull, E.L., Yrlid, U., Jenkins, C.D. & Macpherson, G.G. Intestinal dendritic cell subsets: differential effects of systemic TLR4 stimulation on migratory fate and activation in vivo. J. Immunol. 174, 1374–1384 (2005).

    Article  CAS  Google Scholar 

  23. Yrlid, U. et al. Regulation of intestinal dendritic cell migration and activation by plasmacytoid dendritic cells, TNF-alpha and type 1 IFNs after feeding a TLR7/8 ligand. J. Immunol. 176, 5205–5212 (2006).

    Article  CAS  Google Scholar 

  24. Matsuno, K., Kudo, S., Ezaki, T. & Miyakawa, K. Isolation of dendritic cells in the rat liver lymph. Transplantation 60, 765–768 (1995).

    Article  CAS  Google Scholar 

  25. Matsuno, K., Ezaki, T., Kudo, S. & Uehara, Y. A life stage of particle-laden rat dendritic cells in vivo: their terminal division, active phagocytosis, and translocation from the liver to the draining lymph. J. Exp. Med. 183, 1865–1878 (1996).

    Article  CAS  Google Scholar 

  26. Kudo, S., Matsuno, K., Ezaki, T. & Ogawa, M. A novel migration pathway for rat dendritic cells from the blood: hepatic sinusoids-lymph translocation. J. Exp. Med. 185, 777–784 (1997).

    Article  CAS  Google Scholar 

  27. Matsuno, K. & Ezaki, T. Dendritic cell dynamics in the liver and hepatic lymph. Int. Rev. Cytol. 197, 83–136 (2000).

    Article  CAS  Google Scholar 

  28. Matsuno, K., Nomiyama, H., Yoneyama, H. & Uwatoku, R. Kupffer cell-mediated recruitment of dendritic cells to the liver crucial for a host defense. Dev. Immunol. 9, 143–149 (2002).

    Article  CAS  Google Scholar 

  29. Hopkins, J. & Hall, J.G. Selective entry of immunoblasts into gut from intestinal lymph. Nature 259, 308 (1976).

    Article  CAS  Google Scholar 

  30. Bujdoso, R., Hopkins, J., Dutia, B.M., Young, P. & McConnell, I. Characterisation of sheep afferent lymph dendritic cells and their role in antigen carriage. J. Exp. Med. 170, 1285–1302 (1989).

    Article  CAS  Google Scholar 

  31. Bujdoso, R., Hopkins, J., Dutia, B.M., Young, P. & McConnell, I. Characterization of sheep afferent lymph dendritic cells and their role in antigen carriage. J. Exp. Med. 170, 1285–1301 (1989).

    Article  CAS  Google Scholar 

  32. Hopkins, J., Dutia, B.M., Bujdoso, R. & McConnell, I. In vivo modulation of CD1 and MHC class II expression by sheep afferent lymph dendritic cells. Comparison of primary and secondary immune responses. J. Exp. Med. 170, 1303–1318 (1989).

    Article  CAS  Google Scholar 

  33. Bujdoso, R., Harkiss, G., Hopkins, J. & McConnell, I. Afferent lymph dendritic cells: a model for antigen capture and presentation in vivo. Int. Rev. Immunol. 6, 177–186 (1990).

    Article  CAS  Google Scholar 

  34. Harkiss, G., Hopkins, J. & McConnell, I. Uptake of antigen by afferent lymph dendritic cells mediated by antibody. Eur. J. Immunol. 20, 2367–2373 (1990).

    Article  CAS  Google Scholar 

  35. Hope, J.C. et al. Identification of dendritic cells as a major source of interleukin-6 in draining lymph nodes following skin sensitization of mice. Immunology 86, 441–447 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Coughlan, S.N., Harkiss, G.D., Dickson, L. & Hopkins, J. Fc gamma receptor expression on sheep afferent lymph dendritic cells and rapid modulation of cell surface phenotype following Fc gamma receptor engagement in vitro and in vivo. Scand. J. Immunol. 43, 31–38 (1996).

    Article  CAS  Google Scholar 

  37. Haig, D.M., Hopkins, J. & Miller, H.R. Local immune responses in afferent and efferent lymph. Immunology 96, 155–163 (1999).

    Article  CAS  Google Scholar 

  38. Howard, C.J. et al. Dendritic cells in cattle: phenotype and function. Vet. Immunol. Immunopathol. 72, 119–124 (1999).

    Article  CAS  Google Scholar 

  39. Hope, J.C., Sopp, P., Collins, R.A. & Howard, C.J. Differences in the induction of CD8+ T cell responses by subpopulations of dendritic cells from afferent lymph are related to IL-1 alpha secretion. J. Leukoc. Biol. 69, 271–279 (2001).

    CAS  PubMed  Google Scholar 

  40. Howard, C.J. & Hope, J.C. Dendritic cells, implications on function from studies of the afferent lymph veiled cell. Vet. Immunol. Immunopathol. 77, 1–13 (2000).

    Article  CAS  Google Scholar 

  41. Stephens, S.A., Brownlie, J., Charleston, B. & Howard, C.J. Differences in cytokine synthesis by the sub-populations of dendritic cells from afferent lymph. Immunology 110, 48–57 (2003).

    Article  CAS  Google Scholar 

  42. Gliddon, D.R., Hope, J.C., Brooke, G.P. & Howard, C.J. DEC-205 expression on migrating dendritic cells in afferent lymph. Immunology 111, 262–272 (2004).

    Article  CAS  Google Scholar 

  43. Paulin, S.M. et al. Analysis of Salmonella enterica serotype-host specificity in calves: avirulence of S. enterica serotype gallinarum correlates with bacterial dissemination from mesenteric lymph nodes and persistence in vivo. Infect. Immun. 70, 6788–6797 (2002).

    Article  CAS  Google Scholar 

  44. Barratt-Boyes, S.M., Rossitto, P.V., Taylor, B.C., Ellis, J.A. & MacLachlan, N.J. Response of the regional lymph node to bluetongue virus infection in calves. Vet. Immunol. Immunopathol. 45, 73–84 (1995).

    Article  CAS  Google Scholar 

  45. Hope, J.C., Howard, C.J., Prentice, H. & Charleston, B. Isolation and purification of afferent lymph dendritic cells that drain the skin of cattle. Nat. Protocols 1, 982–987 (2006).

    Article  CAS  Google Scholar 

  46. Moslen, M.T., Kanz, M.F., Bhatia, J. & Catarau, E.M. Two cannula method for parenteral infusion and serial blood sampling in the freely moving rat. JPEN J. Parenter. Enteral. Nutr. 12, 633–637 (1988).

    Article  CAS  Google Scholar 

  47. Hauss, D., Fogal, S. & Ficorilli, J. Chronic collection of mesenteric lymph from conscious, tethered rats. Contemp. Top. Lab. Anim. Sci. 37, 56–58 (1998).

    PubMed  Google Scholar 

  48. Mandel, M.A. Isolation of mouse lymphocytes for immunologic studies by thoracic duct cannulation. Proc. Soc. Exp. Biol. Med. 126, 521–524 (1967).

    Article  CAS  Google Scholar 

  49. Lewis, H., Mitchell, J. & Nossal, G.J. Subpopulations of rat and mouse thoracic duct small lymphocytes in the Salmonella flagellar antigen system. Immunology 17, 955–967 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Miller, J.F. & Sprent, J. Thymus-derived cells in mouse thoracic duct lymph. Nat. New Biol. 230, 267–270 (1971).

    Article  CAS  Google Scholar 

  51. Bankhurst, A.D. & Warner, N.L. Surface immunoglobulins on the thoracic duct lymphocytes of the congenitally athymic (nude) mouse. Aust. J. Exp. Biol. Med. Sci. 50, 661–664 (1972).

    Article  CAS  Google Scholar 

  52. Deaton, J.G. Thoracic duct lymph drainage in the mouse: a technique for producing lymphocyte-depleted animals. Lymphology 5, 115–120 (1972).

    CAS  PubMed  Google Scholar 

  53. Sprent, J. & Basten, A. Circulating T and B lymphocytes of the mouse. II. Lifespan. Cell. Immunol. 7, 40–59 (1973).

    Article  CAS  Google Scholar 

  54. Sprent, J. Circulating T and B lymphocytes of the mouse. I. Migratory properties. Cell Immunol. 7, 10–39 (1973).

    Article  CAS  Google Scholar 

  55. Kearney, J.F. & Reade, P.C. The kinetics of mouse thoracic duct lymphocyte activation by mitogens in vitro. Aust. J. Exp. Biol. Med. Sci. 52, 21–31 (1974).

    Article  CAS  Google Scholar 

  56. Ropke, C., Hougen, H.P. & Everett, N.B. Long-lived T and B lymphocytes in the bone marrow and thoracic duct lymph of the mouse. Cell Immunol. 15, 82–93 (1975).

    Article  CAS  Google Scholar 

  57. Bainbridge, D.R. The mouse circus: a simple apparatus for thoracic duct cannulation and continuous intravenous infusion. J. Immunol. Methods 17, 63–72 (1977).

    Article  CAS  Google Scholar 

  58. Freitas, A.A. & Coutinho, A.A. Characterization of mouse thoracic duct B lymphocytes. I. Evidence of functional heterogeneity. Eur. J. Immunol. 10, 772–776 (1980).

    Article  CAS  Google Scholar 

  59. Freitas, A.A., Rose, M. & Rocha, B. Random recirculation of small T lymphocytes from thoracic duct lymph in the mouse. Cell Immunol. 56, 29–39 (1980).

    Article  CAS  Google Scholar 

  60. Korngold, R. & Bennink, J.R. Collection of mouse thoracic duct lymphocytes. Methods Enzymol. 108, 270–274 (1984).

    Article  CAS  Google Scholar 

  61. Ionac, M., Laskay, T., Labahn, D., Geisslinger, G. & Solbach, W. Improved technique for cannulation of the murine thoracic duct: a valuable tool for the dissection of immune responses. J. Immunol. Methods 202, 35–40 (1997).

    Article  CAS  Google Scholar 

  62. Rhodes, J.M. Isolation of large mononuclear Ia-positive veiled cells from the mouse thoracic duct. J. Immunol. Methods 85, 383–392 (1985).

    Article  CAS  Google Scholar 

  63. Rhodes, J.M. & Agger, R. Comparison of membrane antigens of mouse dendritic cell types. Immunol. Lett. 16, 107–112 (1987).

    Article  CAS  Google Scholar 

  64. Rhodes, J.M., Balfour, B.M., Blom, J. & Agger, R. Comparison of antigen uptake by peritoneal macrophages and veiled cells from the thoracic duct using isotope-, FITC-, or gold-labelled antigen. Immunology 68, 403–409 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tilney, N.L. Patterns of lymphatic drainage in the adult laboratory rat. J. Anat. 109, 3 (1971).

    Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the animal facility for care of the animals. We gratefully acknowledge A. Milling and M. Nassar for critical reading of the manuscript. The work was funded by the Biotechnology and Biological Sciences Research Council, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon WF Milling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milling, S., Jenkins, C. & MacPherson, G. Collection of lymph-borne dendritic cells in the rat. Nat Protoc 1, 2263–2270 (2006). https://doi.org/10.1038/nprot.2006.315

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.315

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing