Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa

Abstract

Broad host-range mini-Tn7 vectors facilitate integration of single-copy genes into bacterial chromosomes at a neutral, naturally evolved site. Here we present a protocol for employing the mini-Tn7 system in bacteria with single attTn7 sites, using the example Pseudomonas aeruginosa. The procedure involves, first, cloning of the genes of interest into an appropriate mini-Tn7 vector; second, co-transfer of the recombinant mini-Tn7 vector and a helper plasmid encoding the Tn7 site-specific transposition pathway into P. aeruginosa by either transformation or conjugation, followed by selection of insertion-containing strains; third, PCR verification of mini-Tn7 insertions; and last, optional Flp-mediated excision of the antibiotic-resistance selection marker present on the chromosomally integrated mini-Tn7 element. From start to verification of the insertion events, the procedure takes as little as 4 d and is very efficient, yielding several thousand transformants per microgram of input DNA or conjugation mixture. In contrast to existing chromosome integration systems, which are mostly based on species-specific phage or more-or-less randomly integrating transposons, the mini-Tn7 system is characterized by its ready adaptability to various bacterial hosts, its site specificity and its efficiency. Vectors have been developed for gene complementation, construction of gene fusions, regulated gene expression and reporter gene tagging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Components of the Tn7 cloning and integration system.
Figure 2: Suicide delivery vector and chromosomal integration of mini-Tn7.
Figure 3: Tn7 transposition in a bacterium with a single attTn7 site: example P. aeruginosa.

Similar content being viewed by others

References

  1. Blatny, J.M., Brautaset, T., Winther-Larsen, H.C., Karunakaran, P. & Valla, S. Improved broad-host-range RK2 vectors for high and low regulated gene expression levels in Gram-negative bacteria. Plasmid 38, 35–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Trieu-Cuot, P., Carlier, C., Poyart-Salmeron, C. & Courvalin, P. An integrative vector exploiting the transposition properties of Tn1545 for insertional mutagenesis and cloning of genes from Gram-positive bacteria. Gene 106, 21–27 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Stover, C.K. et al. New use of BCG for recombinant vaccines. Nature 351, 456–460 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Hoang, T.T., Kutchma, A.J., Becher, A. & Schweizer, H.P. Integration proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43, 59–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. & Hopwood, D.A. Practical Streptomyces Genetics (The John Innes Foundation, Colney, UK, 2000).

    Google Scholar 

  6. Charpentier, E. et al. Novel cassette-based shuttle vector system for Gram-positive bacteria. Appl. Environ. Microbiol. 70, 6076–6085 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K.N. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative bacteria. J. Bacteriol. 172, 6568–6572 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Craig, N.L. Transposon Tn7. in Mobile DNA (eds. Berg, D.E. & Howe, M.M.) 211–225 (American Society for Microbiology, Washington DC, 1989).

    Google Scholar 

  9. Craig, N.L. Transposon Tn7. Curr. Top. Microbiol. Immunol. 204, 27–48 (1996).

    CAS  PubMed  Google Scholar 

  10. Choi, K.-H. et al. A Tn7-based broad-range bacterial cloning and expression system. Nat. Methods 2, 443–448 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Peters, J.E. & Craig, N.L. Tn7: smarter than we thought. Nat. Rev. Mol. Cell Biol. 2, 806–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Bao, Y., Lies, D.P., Fu, H. & Roberts, G.P. An improved Tn7-based system for the single-copy insertion of cloned genes into the chromosomes of Gram-negative bacteria. Gene 109, 167–168 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Hojberg, O., Schnider, U., Winteler, H.V., Sorensen, J. & Haas, D. Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. Appl. Environ. Microbiol. 65, 4085–4093 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Koch, B., Jensen, L.E. & Nybroe, O. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria. J. Mirobiol. Methods 45, 187–195 (2001).

    Article  CAS  Google Scholar 

  15. Klausen, M. et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol. 48, 1511–1524 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Lambertsen, L., Sternberg, C. & Molin, S. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ. Microbiol. 6, 726–732 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Stellwagen, A.E. & Craig, N.L. Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition. EMBO J. 16, 6823–6834 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi, K.-H., DeShazer, D. & Schweizer, H.P. mini-Tn7 insertion in bacteria with multiple glmS-linked attTn7 sites: example Burkholderia mallei ATCC 23344. Nat. Protocols 10.1038/nprot2006.25 (2006).

  19. Choi, K.-H. & Schweizer, H.P. mini-Tn7 insertion in bacteria with secondary, non-glmS-linked attTn7 sites: example Proteus mirabilis HI4320. Nat. Protocols 1, 170–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Becher, A. & Schweizer, H.P. Integration-proficient Pseudomonas aeruginosa vectors for isolation of single copy chromosomal lacZ and lux gene fusions. BioTechniques 29, 948–954 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Schweizer, H.P., Hoang, T.T., Propst, K.L., Ornelas, H.R. & Karkhoff-Schweizer, R.R. Vector design and development of host strains for Pseudomonas. in Genetic Engineering (ed. Setlow, J.K.) 69–81 (Kluwer-Academic/Plenum, New York, 2001).

    Google Scholar 

  22. Wyckoff, T.J. & Wozniak, D.J. Transcriptional analysis of genes involved in Pseudomonas aeruginosa biofilms. Methods Enzymol. 336, 144–151 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Sauer, K., Camper, A.K., Ehrlich, G.D., Costerton, J.W. & Davies, D.G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184, 1140–1154 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi, K.-H., Kumar, A. & Schweizer, H.P. A 10 min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J. Microbiol. Methods 64, 391–397 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Hoang, T.T., Karkhoff-Schweizer, R.R., Kutchma, A.J. & Schweizer, H.P. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212, 77–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Sambrook, J. & Russell, D.W. Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).

    Google Scholar 

Download references

Acknowledgements

We thank all present and former members of the Schweizer laboratory, especially R.R. Karkhoff-Schweizer, C. Lopez, J. Gaynor, S. Joshi, K. White and many undergraduate students, for their important contributions to establishing the Tn7 system in various bacteria, especially P. aeruginosa. This work was supported by a Public Health Service grant (AI058141) from the US National Institute of Allergy and Infectious Diseases (NIAID).

Author information

Authors and Affiliations

Authors

Contributions

K.H.C. performed all experiments and assisted in writing the manuscript; H.P.S. supervised the research and wrote the manuscript.

Corresponding author

Correspondence to Herbert P Schweizer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, KH., Schweizer, H. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1, 153–161 (2006). https://doi.org/10.1038/nprot.2006.24

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.24

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing