Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Analysis of the kinetics of folding of proteins and peptides using circular dichroism

Abstract

Circular dichroism (CD) is a useful spectroscopic technique for studying the secondary structure, folding and binding properties of proteins. This protocol covers how to use the intrinsic circular dichroic properties of proteins to follow their folding and unfolding as a function of time. Included are methods of obtaining data and for analyzing the folding and unfolding data to determine the rate constants and the order of the folding and unfolding reactions. The protocol focuses on the use of CD to follow folding when it is relatively slow, on the order of minutes to days. The methods for analyzing the data, however, can also be applied to data collected with a CD machine equipped with stopped-flow accessories in the range of milliseconds to seconds and folding analyzed by other spectroscopic methods including changes in absorption or fluorescence spectra as a function of time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circular dichroism (CD) spectra of proteins and peptides with representative secondary structures.
Figure 2: Circular dichroism of the wild-type (WT) and G14A mutant collagen peptides as a function of temperature and peptide concentration.
Figure 3: Chevron plots of the rate constants of folding and unfolding of two isolated domains of a ribosomal protein, L9, as a function of the concentration of a denaturant.
Figure 4: Unfolding of the wild-type (WT) and G14 mutant collagen peptides as a function of time.
Figure 5: Folding of the wild-type (WT) and G14A mutant collagen model peptides as a function of time.
Figure 6: Linear analyses of the kinetics of folding of the wild-type (WT) collagen peptide at 2 °C.

Similar content being viewed by others

References

  1. Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. advance online publication (doi:10.1038/nprot.2006.202).

  2. Greenfield, N.J. Using circular dichroism, collected as a function of temperature, to determine the thermodynamics of protein folding and binding interactions. Nat. Protoc. advance online publication (doi:10.1038/nprot.2006.204).

  3. Greenfield, N.J. Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nat. Protoc. advance online publication (doi:10.1038/nprot.2006.229).

  4. Anfinsen, C.B. & Scheraga, H.A. Experimental and theoretical aspects of protein folding. Adv. Protein. Chem. 29, 205–300 (1975).

    Article  CAS  Google Scholar 

  5. Baldwin, R.L. Intermediates in protein folding reactions and the mechanism of protein folding. Annu. Rev. Biochem. 44, 453–475 (1975).

    Article  CAS  Google Scholar 

  6. Kuwajima, K. Circular dichroism. Methods Mol. Biol. 40, 115–135 (1995).

    CAS  PubMed  Google Scholar 

  7. Royer, C.A. Fluorescence spectroscopy. Methods Mol. Biol. 40, 65–89 (1995).

    CAS  PubMed  Google Scholar 

  8. Kuwajima, K. & Schmid, F.X. Experimental studies of folding kinetics and structural dynamics of small proteins. Adv. Biophys. 18, 43–74 (1984).

    Article  CAS  Google Scholar 

  9. Baldwin, R.L. The nature of protein folding pathways: the classical versus the new view. J. Biomol. NMR 5, 103–109 (1995).

    Article  CAS  Google Scholar 

  10. Eftink, M.R. & Shastry, M.C. Fluorescence methods for studying kinetics of protein-folding reactions. Methods Enzymol. 278, 258–286 (1997).

    Article  CAS  Google Scholar 

  11. Roder, H., Maki, K., Cheng, H. & Shastry, M.C. Rapid mixing methods for exploring the kinetics of protein folding. Methods 34, 15–27 (2004).

    Article  CAS  Google Scholar 

  12. Tanford, C. Physical Chemistry of Macromolecules (John Wiley, New York, 1961).

    Google Scholar 

  13. Dyson, H.J. & Wright, P.E. Insights into protein folding from NMR. Annu. Rev. Phys. Chem. 47, 369–395 (1996).

    Article  CAS  Google Scholar 

  14. Dobson, C.M. & Hore, P.J. Kinetic studies of protein folding using NMR spectroscopy. Nat. Struct. Biol. 5 (Suppl): 504–507 (1998).

    Article  CAS  Google Scholar 

  15. Konermann, L. & Simmons, D.A. Protein-folding kinetics and mechanisms studied by pulse-labeling and mass spectrometry. Mass Spectrom. Rev. 22, 1–26 (2003).

    Article  CAS  Google Scholar 

  16. Krishna, M.M., Hoang, L., Lin, Y. & Englander, S.W. Hydrogen exchange methods to study protein folding. Methods 34, 51–64 (2004).

    Article  CAS  Google Scholar 

  17. Konermann, L., Pan, J. & Wilson, D.J. Protein folding mechanisms studied by time-resolved electrospray mass spectrometry. Biotechniques 40, 135–141 (2006).

    Article  CAS  Google Scholar 

  18. Piez, K.A. & Sherman, M.R. Equilibrium and kinetic studies of the helix-coil transition in α1-CB2, a small peptide from collagen. Biochemistry 9, 4134–40 (1970).

    Article  CAS  Google Scholar 

  19. Wilkinson, R.W. A simple method for determining rate constants and orders of reactions. Chem. Ind. 2, 1395–1397 (1961).

    Google Scholar 

  20. Marquardt, D.W. An algorithm for the estimation of non-linear parameters. J. Soc. Indust. Appl. Math. 11, 431–441 (1963).

    Article  Google Scholar 

  21. Pace, C.N. & McGrath, T. Substrate stabilization of lysozyme to thermal and guanidine hydrochloride denaturation. J. Biol. Chem. 255, 3862–3865 (1980).

    CAS  PubMed  Google Scholar 

  22. Boudko, S. et al. Nucleation and propagation of the collagen triple helix in single-chain and trimerized peptides: transition from third- to first-order kinetics. J. Mol. Biol. 317, 459–470 (2002).

    Article  CAS  Google Scholar 

  23. Jackson, S.E. & Fersht, A.R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  Google Scholar 

  24. Baum, J. & Brodsky, B. Folding of peptide models of collagen and misfolding in disease. Curr. Opin. Struct. Biol. 9, 122–128 (1999).

    Article  CAS  Google Scholar 

  25. Sato, S., Luisi, D.L. & Raleigh, D.P. pH jump studies of the folding of the multidomain ribosomal protein L9: the structural organization of the N-terminal domain does not affect the anomalously slow folding of the C-terminal domain. Biochemistry 39, 4955–4962 (2000).

    Article  CAS  Google Scholar 

  26. Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999).

    Article  CAS  Google Scholar 

  27. Hetz, C. & Soto, C. Protein misfolding and disease: the case of prion disorders. Cell. Mol. Life Sci. 60, 133–143 (2003).

    Article  CAS  Google Scholar 

  28. Chiti, F. & Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  CAS  Google Scholar 

  29. Muchowski, P.J. Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron 35, 9–12 (2002).

    Article  CAS  Google Scholar 

  30. Melone, M.A., Jori, F.P. & Peluso, G. Huntington's disease: new frontiers for molecular and cell therapy. Curr. Drug Targets 6, 43–56 (2005).

    Article  CAS  Google Scholar 

  31. Colon, W. & Kelly, J.W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31, 8654–8660 (1992).

    Article  CAS  Google Scholar 

  32. Hope, J. et al. Cytotoxicity of prion protein peptide (PrP106–126) differs in mechanism from the cytotoxic activity of the Alzheimer's disease amyloid peptide, Aβ25-35. Neurodegeneration 5, 1–11 (1996).

    Article  CAS  Google Scholar 

  33. Lai, Z., McCulloch, J., Lashuel, H.A. & Kelly, J.W. Guanidine hydrochloride–induced denaturation and refolding of transthyretin exhibits a marked hysteresis: equilibria with high kinetic barriers. Biochemistry 36, 10230–10239 (1997).

    Article  CAS  Google Scholar 

  34. Kapurniotu, A. et al. Contribution of advanced glycosylation to the amyloidogenicity of islet amyloid polypeptide. Eur. J. Biochem. 251, 208–216 (1998).

    Article  CAS  Google Scholar 

  35. Kayed, R. et al. Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. J. Mol. Biol. 287, 781–796 (1999).

    Article  CAS  Google Scholar 

  36. Chen, S., Berthelier, V., Yang, W. & Wetzel, R. Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol. 311, 173–182 (2001).

    Article  CAS  Google Scholar 

  37. Jiang, X. et al. An engineered transthyretin monomer that is nonamyloidogenic, unless it is partially denatured. Biochemistry 40, 11442–11452 (2001).

    Article  CAS  Google Scholar 

  38. Zou, W.Q., Yang, D.S., Fraser, P.E., Cashman, N.R. & Chakrabartty, A. All or none fibrillogenesis of a prion peptide. Eur. J. Biochem. 268, 4885–4891 (2001).

    Article  CAS  Google Scholar 

  39. Koga, T., Matsuoka, M. & Higashi, N. Structural control of self-assembled nanofibers by artificial β-sheet peptides composed of D- or L-isomer. J. Am. Chem. Soc. 127, 17596–17597 (2005).

    Article  CAS  Google Scholar 

  40. Li, J. et al. Structure and influence on stability and activity of the N-terminal propeptide part of lung surfactant protein C. FEBS J. 273, 926–935 (2006).

    Article  CAS  Google Scholar 

  41. Hamada, D. & Dobson, C.M. A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea. Protein Sci. 11, 2417–2426 (2002).

    Article  CAS  Google Scholar 

  42. Hortschansky, P., Schroeckh, V., Christopeit, T., Zandomeneghi, G. & Fandrich, M. The aggregation kinetics of Alzheimer's β-amyloid peptide is controlled by stochastic nucleation. Protein Sci. 14, 1753–1759 (2005).

    Article  CAS  Google Scholar 

  43. Creighton, T.E. Pathways and mechanisms of protein folding. Adv. Biophys. 18, 1–20 (1984).

    Article  CAS  Google Scholar 

  44. Roder, H. & Shastry, M.R. Methods for exploring early events in protein folding. Curr. Opin. Struct. Biol. 9, 620–626 (1999).

    Article  CAS  Google Scholar 

  45. Zitzewitz, J.A., Bilsel, O., Luo, J., Jones, B.E. & Matthews, C.R. Probing the folding mechanism of a leucine zipper peptide by stopped-flow circular dichroism spectroscopy. Biochemistry 34, 12812–12819 (1995).

    Article  CAS  Google Scholar 

  46. Persikov, A.V., Xu, Y. & Brodsky, B. Equilibrium thermal transitions of collagen model peptides. Protein Sci. 13, 893–902 (2004).

    Article  CAS  Google Scholar 

  47. Greenfield, N. et al. Conformational transitions of a collagen fragment studied by CD and 1H-NMR. Biophys. J. 57, 422a (1990).

    Google Scholar 

  48. Piez, K.A. & Sherman, M.R. Characterization of the product formed by renaturation of α1-CB2, a small peptide from collagen. Biochemistry 9, 4129–4133 (1970).

    Article  CAS  Google Scholar 

  49. Rossi, A. et al. Type I collagen CNBr peptides: species and behavior in solution. Biochemistry 35, 6048–6057 (1996).

    Article  CAS  Google Scholar 

  50. Rossi, A., Zanaboni, G., Cetta, G. & Tenni, R. Stability of type I collagen CNBr peptide trimers. J. Mol. Biol. 269, 488–493 (1997).

    Article  CAS  Google Scholar 

  51. Engel, J., Chen, H.T., Prockop, D.J. & Klump, H. The triple helix in equilibrium with coil conversion of collagen-like polytripeptides in aqueous and nonaqueous solvents. Comparison of the thermodynamic parameters and the binding of water to (L-Pro-L-Pro-Gly)n and (L-Pro-L-Hyp-Gly)n. Biopolymers 16, 601–622 (1977).

    Article  CAS  Google Scholar 

  52. Long, C.G., Li, M.H., Baum, J. & Brodsky, B. Nuclear magnetic resonance and circular dichroism studies of a triple-helical peptide with a glycine substitution. J. Mol. Biol. 225, 1–4 (1992).

    Article  CAS  Google Scholar 

  53. Long, C.G. et al. Characterization of collagen-like peptides containing interruptions in the repeating Gly-X-Y sequence. Biochemistry 32, 11688–11695 (1993).

    Article  CAS  Google Scholar 

  54. Bovey, F.A. & Hood, F.P. Circular dichroism spectrum of poly-L-proline. Biopolymers 5, 325–326 (1967).

    Article  CAS  Google Scholar 

  55. Greenfield, N. & Fasman, G.D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108–4116 (1969).

    Article  CAS  Google Scholar 

  56. Bentz, H., Bachinger, H.P., Glanville, R. & Kuhn, K. Physical evidence for the assembly of A and B chains of human placental collagen in a single triple helix. Eur. J. Biochem. 92, 563–567 (1978).

    Article  CAS  Google Scholar 

  57. Tiffany, M.L. & Krimm, S. Effect of temperature on the circular dichroism spectra of polypeptides in the extended state. Biopolymers 11, 2309–2316 (1972).

    Article  CAS  Google Scholar 

  58. Woody, R.W. Circular dichroism and conformation of unordered polypeptides. Adv. Biophys. Chem. 2, 31–79 (1992).

    Google Scholar 

  59. Sreerama, N. & Woody, R.W. Poly(pro)II helices in globular proteins: identification and circular dichroic analysis. Biochemistry 33, 10022–10025 (1994).

    Article  CAS  Google Scholar 

  60. Shi, Z., Woody, R.W. & Kallenbach, N.R. Is polyproline II a major backbone conformation in unfolded proteins? Adv. Protein. Chem. 62, 163–240 (2002).

    Article  CAS  Google Scholar 

  61. Sato, S., Kuhlman, B., Wu, W.J. & Raleigh, D.P. Folding of the multidomain ribosomal protein L9: the two domains fold independently with remarkably different rates. Biochemistry 38, 5643–5650 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by National Institutes of Health grant GM-36326 to N.J.G. and Sarah E. Hitchcock-DeGregori, and by the Circular Dichroism Facility at Robert Wood Johnson Medical School (UMDNJ). In addition, I thank my collaborators and friends, Barbara Brodsky, Gaetano T. Montelione and especially Sarah E. Hitchcock-DeGregori for their encouragement and support of my studies of protein folding and interactions using CD and NMR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma J Greenfield.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Equations

Equations for determining rate constants from CD data (PDF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenfield, N. Analysis of the kinetics of folding of proteins and peptides using circular dichroism. Nat Protoc 1, 2891–2899 (2006). https://doi.org/10.1038/nprot.2006.244

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.244

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing