Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions

Abstract

Circular dichroism (CD) is an excellent spectroscopic technique for following the unfolding and folding of proteins as a function of temperature. One of its principal applications is to determine the effects of mutations and ligands on protein and polypeptide stability. If the change in CD as a function of temperature is reversible, analysis of the data may be used to determined the van't Hoff enthalpy and entropy of unfolding, the midpoint of the unfolding transition and the free energy of unfolding. Binding constants of protein-protein and protein-ligand interactions may also be estimated from the unfolding curves. Analysis of CD spectra obtained as a function of temperature is also useful to determine whether a protein has unfolding intermediates. Measurement of the spectra of five folded proteins and their unfolding curves at a single wavelength requires 8 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD spectra of polypeptides and proteins with some representative secondary structures.
Figure 2: Spectra of unbound tropomyosin and troponin model proteins and protein-protein complexes.
Figure 3: Typical curves of ellipticity as a function of temperature used to determine the thermodynamics of folding.
Figure 4: Example of the analysis of set of spectra using the CCA.

Similar content being viewed by others

References

  1. Velluz, L., Legrand, M. & Grosjean, M. Optical Circular Dichroism: Principles, Measurements, and Applications (Verlag Chemie Academic Press Inc, New York and London, 1965).

    Google Scholar 

  2. Beychok, S. Circular dichroism of biological macromolecules. Science 154, 1288–1299 (1966).

    Article  CAS  Google Scholar 

  3. Adler, A.J., Greenfield, N.J. & Fasman, G.D. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol. 27, 675–735 (1973).

    Article  CAS  Google Scholar 

  4. Johnson, W.C., Jr. Protein secondary structure and circular dichroism: a practical guide. Proteins 7, 205–214 (1990).

    Article  CAS  Google Scholar 

  5. Woody, R.W. Circular dichroism. Methods Enzymol. 246, 34–71 (1995).

    Article  CAS  Google Scholar 

  6. Kelly, S.M., Jess, T.J. & Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751, 119–139 (2005).

    Article  CAS  Google Scholar 

  7. Miles, A.J. & Wallace, B.A. Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chem. Soc. Rev. 35, 39–51 (2006).

    Article  CAS  Google Scholar 

  8. Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protocols 1, 2006 doi: 10.1038/nprot.2006.202.

  9. Ohgushi, M. & Wada, A. 'Molten-globule state': a compact form of globular proteins with mobile side-chains. FEBS Lett. 164, 21–24 (1983).

    Article  CAS  Google Scholar 

  10. Dolgikh, D.A., Abaturov, L.V., Brazhnikov, E.V., Lebedev In, O. & Chirgadze In, N. [Acid form of carbonic anhydrase: “molten globule” with a secondary structure]. Dokl. Akad. Nauk. SSSR 272, 1481–1484 (1983).

    CAS  PubMed  Google Scholar 

  11. Bolotina, I.A. [Secondary structure of proteins from circular dichroism spectra. V. Secondary structure of proteins in a “molten globule” state]. Mol. Biol. (Mosk.) 21, 1625–1635 (1987).

    CAS  Google Scholar 

  12. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  13. Goto, Y., Calciano, L.J. & Fink, A.L. Acid-induced folding of proteins. Proc. Natl. Acad. Sci. USA 87, 573–577 (1990).

    Article  CAS  Google Scholar 

  14. Greenfield, N.J. Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nat. Protocols 1, 2006 doi: 10.1038/nprot.2006.229.

  15. Greenfield, N.J. Analysis of the kinetics of folding of proteins and peptides using circular dichroism. Nat. Protocols 1, 2006 doi: 10.1038/nprot.2006.244.

  16. Greenfield, N.J. Circular dichroism analysis for protein-protein interactions. Methods Mol. Biol. 261, 55–78 (2004).

    CAS  PubMed  Google Scholar 

  17. Greenfield, N.J. Analysis of circular dichroism data. Methods Enzymol. 383, 282–317 (2004).

    Article  CAS  Google Scholar 

  18. Pace, C.N. & McGrath, T. Substrate stabilization of lysozyme to thermal and guanidine hydrochloride denaturation. J. Biol. Chem. 255, 3862–3865 (1980).

    CAS  PubMed  Google Scholar 

  19. Yadav, S. & Ahmad, F. A new method for the determination of stability parameters of proteins from their heat-induced denaturation curves. Anal. Biochem. 283, 207–213 (2000).

    Article  CAS  Google Scholar 

  20. Eftink, M.R. Use of multiple spectroscopic methods to monitor equilibrium unfolding of proteins. Methods Enzymol. 259, 487–512 (1995).

    Article  CAS  Google Scholar 

  21. Johnson, C.R., Morin, P.E., Arrowsmith, C.H. & Freire, E. Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor. Biochemistry 34, 5309–5316 (1995).

    Article  CAS  Google Scholar 

  22. Eftink, M.R. et al. Thermodynamics of the unfolding and spectroscopic properties of the V66W mutant of staphylococcal nuclease and its 1–136 fragment. Biochemistry 35, 8084–8094 (1996).

    Article  CAS  Google Scholar 

  23. Boice, J.A., Dieckmann, G.R., DeGrado, W.F. & Fairman, R. Thermodynamic analysis of a designed three-stranded coiled coil. Biochemistry 35, 14480–14485 (1996).

    Article  CAS  Google Scholar 

  24. Horng, J.C., Moroz, V. & Raleigh, D.P. Rapid cooperative two-state folding of a miniature α-β protein and design of a thermostable variant. J. Mol. Biol. 326, 1261–1270 (2003).

    Article  CAS  Google Scholar 

  25. Perczel, A., Hollósi, M., Tusnády, G. & Fasman, G.D. Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins. Protein Eng. 4, 669–679 (1991).

    Article  CAS  Google Scholar 

  26. Greenfield, N.J. & Hitchcock-DeGregori, S.E. Conformational intermediates in the folding of a coiled-coil model peptide of the N-terminus of tropomyosin and α α-tropomyosin. Protein Sci. 2, 1263–1273 (1993).

    Article  CAS  Google Scholar 

  27. Safar, J., Roller, P.P., Gajdusek, D.C. & Gibbs, C.J., Jr. Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity. Protein Sci. 2, 2206–2216 (1993).

    Article  CAS  Google Scholar 

  28. Staskus, P.W. & Johnson, W.C., Jr. Conformational transition of hyaluronic acid in aqueous-organic solvent monitored by vacuum ultraviolet circular dichroism. Biochemistry 27, 1522–1527 (1988).

    Article  CAS  Google Scholar 

  29. McPhie, P. & Shrager, R.I. An investigation of the thermal unfolding of swine pepsinogen using circular dichroism. Arch. Biochem. Biophys. 293, 46–53 (1992).

    Article  CAS  Google Scholar 

  30. Konno, T. Conformational diversity of acid-denatured cytochrome c studied by a matrix analysis of far-UV CD spectra. Protein Sci. 7, 975–982 (1998).

    Article  CAS  Google Scholar 

  31. Ionescu, R.M., Smith, V.F., O'Neill, J.C., Jr. & Matthews, C.R. Multistate equilibrium unfolding of Escherichia coli dihydrofolate reductase: thermodynamic and spectroscopic description of the native, intermediate, and unfolded ensembles. Biochemistry 39, 9540–9550 (2000).

    Article  CAS  Google Scholar 

  32. Thompson, K.S., Vinson, C.R. & Freire, E. Thermodynamic characterization of the structural stability of the coiled-coil region of the bZIP transcription factor GCN4. Biochemistry 32, 5491–5496 (1993).

    Article  CAS  Google Scholar 

  33. Taylor, J.W., Greenfield, N.J., Wu, B. & Privalov, P.L. A calorimetric study of the folding-unfolding of an α-helix with covalently closed N and C-terminal loops. J. Mol. Biol. 291, 965–976 (1999).

    Article  CAS  Google Scholar 

  34. Singh, A. & Hitchcock-DeGregori, S.E. Local destabilization of the tropomyosin coiled coil gives the molecular flexibility required for actin binding. Biochemistry 42, 14114–14121 (2003).

    Article  CAS  Google Scholar 

  35. Ramsay, G.D. & Eftink, M.R. Analysis of multidimensional spectroscopic data to monitor unfolding of proteins. Methods Enzymol. 240, 615–645 (1994).

    Article  CAS  Google Scholar 

  36. Schellman, J.A. Macromolecular binding. Biopolymers 14, 999–1018 (1975).

    Article  CAS  Google Scholar 

  37. Schellman, J.A. The effect of binding on the melting temperature of biopolymers. Biopolymers 15, 999–1000 (1976).

    Article  CAS  Google Scholar 

  38. Marquardt, D.W. An algorithm for the estimation of non-linear parameters. J. Soc. Indust. Appl. Math. 11, 431–441 (1963).

    Article  Google Scholar 

  39. Greenfield, N.J., Montelione, G.T., Farid, R.S. & Hitchcock-DeGregori, S.E. The structure of the N-terminus of striated muscle α-tropomyosin in a chimeric peptide: nuclear magnetic resonance structure and circular dichroism studies. Biochemistry 37, 7834–7843 (1998).

    Article  CAS  Google Scholar 

  40. Greenfield, N.J., Palm, T. & Hitchcock-DeGregori, S.E. Structure and interactions of the carboxyl terminus of striated muscle α-tropomyosin: it is important to be flexible. Biophys. J. 83, 2754–2766 (2002).

    Article  CAS  Google Scholar 

  41. Greenfield, N.J. et al. The structure of the carboxyl terminus of striated α-tropomyosin in solution reveals an unusual parallel arrangement of interacting α-helices. Biochemistry 42, 614–619 (2003).

    Article  CAS  Google Scholar 

  42. Palm, T., Greenfield, N.J. & Hitchcock-DeGregori, S.E. Tropomyosin ends determine the stability and functionality of overlap and troponin T complexes. Biophys. J. 84, 3181–3189 (2003).

    Article  CAS  Google Scholar 

  43. Palm, T., Graboski, S., Hitchcock-DeGregori, S.E. & Greenfield, N.J. Disease-causing mutations in cardiac troponin T: identification of a critical tropomyosin-binding region. Biophys. J. 81, 2827–2837 (2001).

    Article  CAS  Google Scholar 

  44. Greenfield, N. & Fasman, G.D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108–4116 (1969).

    Article  CAS  Google Scholar 

  45. Bentz, H., Bächinger, H.P., Glanville, R. & Kühn, K. Physical evidence for the assembly of A and B chains of human placental collagen in a single triple helix. Eur. J. Biochem. 92, 563–567 (1978).

    Article  CAS  Google Scholar 

  46. Tiffany, M.L. & Krimm, S. Effect of temperature on the circular dichroism spectra of polypeptides in the extended state. Biopolymers 11, 2309–2316 (1972).

    Article  CAS  Google Scholar 

  47. Woody, R.W. Circular dichroism and conformation of unordered polypeptides. Adv. Biophys. Chem. 2, 31–79 (1992).

    Google Scholar 

Download references

Acknowledgements

The work was supported by a National Institutes of Health grant, GM-36326 to N.J.G. and Dr. Sarah E. Hitchcock-DeGregori, and by the Circular Dichroism Facility at Robert Wood Johnson Medical School (UMDNJ). I thank the late Dr. Gerald D. Fasman for supplying copies of programs to deconvolute data sets using the CCA and Dr. Takashi Konno for supplying a SVD program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma J Greenfield.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Equations

Equations for determining the midpoint of a unfolding or folding transition, TM, and enthalpy of folding, ΔH, from changes in ellipticity as a function of temperature. (PDF 45 kb)

Supplementary Tutorial

Deconvolution of a set of curves with the convex constraint algorithm. (PDF 26 kb)

Supplementary Program

DOS version of the CCA for deconvoluting sets of CD spectra. (ZIP 101 kb)

Supplementary Program (use if having trouble unzipping Supplementary Program above)

DOS version of the CCA for deconvoluting sets of CD spectra. (EXE 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenfield, N. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1, 2527–2535 (2006). https://doi.org/10.1038/nprot.2006.204

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.204

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing