Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Isolation and purification of afferent lymph dendritic cells that drain the skin of cattle

Abstract

Dendritic cells (DCs) are central to the induction of immune responses and are a pivotal control point that determines the outcome of infectious challenge. Cannulation of afferent lymphatic vessels allows the isolation of large numbers of lymph DCs. First, lymph nodes that are draining the skin are surgically removed (takes approximately 1 h). Over a period of 6–8 weeks, afferent lymphatic vessels re-anastomose with the efferent duct, forming larger 'pseudoafferent' lymphatic vessels that can be surgically cannulated. Surgical cannulation takes 2 h to perform; daily maintenance of the catheter requires 30 min. Isolation of lymph cells requires 1 h and an additional 60–180 min to enrich or purify the DCs. The lymph can be harvested for up to 1 month, with relatively constant cell numbers and subset distribution throughout this period. This technique, although technically demanding, facilitates studies of DCs and other cells that traffic in the lymph in both the steady state and following antigenic exposure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cannulation of a pseudoafferent superficial cervical lymph vessel of a calf.
Figure 2
Figure 3: Identification of dendritic cells within afferent lymph cells by flow cytometric analysis.

Similar content being viewed by others

References

  1. Hein, W.R., McClure, S.J. & Miyasaka, M. Cellular composition of peripheral lymph and skin of sheep defined by monoclonal antibodies. Int. Arch. Allergy Appl. Immunol. 84, 241–246 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Howard, C.J., Sopp, P., Brownlie, J., Parsons, K.R. & Lee, L.S. Phenotypic variation and functional differences within dendritic cells isolated from afferent lymph. Adv. Exp. Med. Biol. 378, 105–107 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, L.M. & MacPherson, G.G. Antigen processing: cultured lymph-borne dendritic cells can process and present native protein antigens. Immunology 84, 241–246 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang, F.P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Steinman, R.M. & Nussenzweig, M.C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl. Acad. Sci. USA 99, 351–358 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Emery, D.L., MacHugh, N.D. & Ellis, J.A. The properties and functional activity of non-lymphoid cells from bovine afferent (peripheral) lymph. Immunology 62, 177–183 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwartz-Cornil, I. et al. Probing leukocyte traffic in lymph from oro-nasal mucosae by cervical catheterization in a sheep model. J. Immunol. Methods 305, 152–161 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Hanrahan, C.F. et al. Cellular requirements for the activation and proliferation of ruminant gammadelta T cells. J. Immunol. 159, 4287–4294 (1997).

    CAS  PubMed  Google Scholar 

  10. Yawalkar, N., Hunger, R.E., Pichler, W.J., Braathen, L.R. & Brand, C.U. Human afferent lymph from normal skin contains an increased number of mainly memory / effector CD4(+) T cells expressing activation, adhesion and co-stimulatory molecules. Eur. J. Immunol. 30, 491–497 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Bonneau, M. et al. Migratory monocytes and granulocytes are major lymphatic carriers of Salmonella from tissue to draining lymph node. J. Leukoc. Biol. 79, 268–276 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. McKeever, D.J., MacHugh, N.D., Goddeeris, B.M., Awino, E. & Morrison, W.I. Bovine afferent lymph veiled cells differ from blood monocytes in phenotype and accessory function. J. Immunol. 147, 3703–3709 (1991).

    CAS  PubMed  Google Scholar 

  13. Miller, H.R. & Adams, E.P. Reassortment of lymphocytes in lymph from normal and allografted sheep. Am. J. Pathol. 87, 59–80 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Haig, D.M., Hopkins, J. & Miller, H.R. Local immune responses in afferent and efferent lymph. Immunology 96, 155–163 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Howard, C.J. et al. Identification of two distinct populations of dendritic cells in afferent lymph that vary in their ability to stimulate T cells. J. Immunol. 159, 5372–5382 (1997).

    CAS  PubMed  Google Scholar 

  16. Bujdoso, R., Hopkins, J., Dutia, B.M., Young, P. & McConnell, I. Characterization of sheep afferent lymph dendritic cells and their role in antigen carriage. J. Exp. Med. 170, 1285–1301 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Hopkins, J., Dutia, B.M., Bujdoso, R. & McConnell, I. In vivo modulation of CD1 and MHC class II expression by sheep afferent lymph dendritic cells. Comparison of primary and secondary immune responses. J. Exp. Med. 170, 1303–1318 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Epardaud, M. et al. Enrichment for a CD26hi SIRP-subset in lymph dendritic cells from the upper aero-digestive tract. J. Leukoc. Biol. 76, 553–561 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Hein, W.R., Barber, T., Cole, S.A., Morrison, L. & Pernthaner, A. Long-term collection and characterization of afferent lymph from the ovine small intestine. J. Immunol. Methods 293, 153–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, L., Zhang, M., Jenkins, C. & MacPherson, G.G. Dendritic cell heterogeneity in vivo: two functionally different dendritic cell populations in rat intestinal lymph can be distinguished by CD4 expression. J. Immunol. 161, 1146–1155 (1998).

    CAS  PubMed  Google Scholar 

  21. Liu, L.M. & MacPherson, G.G. Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo. J. Exp. Med. 177, 1299–1307 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, L.M. & MacPherson, G.G. Rat intestinal dendritic cells: immunostimulatory potency and phenotypic characterization. Immunology 85, 88–93 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yrlid, U. & Macpherson, G. Phenotype and function of rat dendritic cell subsets. Apmis. 111, 756–765 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Bimczok, D., Sowa, E.N., Faber-Zuschratter, H., Pabst, R. & Rothkotter, H.J. Site-specific expression of CD11b and SIRPalpha (CD172a) on dendritic cells: implications for their migration patterns in the gut immune system. Eur. J. Immunol. 35, 1418–1427 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Gliddon, D.R. & Howard, C.J. CD26 is expressed on a restricted subpopulation of dendritic cells in vivo. Eur. J. Immunol. 32, 1472–1481 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Howard, C.J. & Hope, J.C. Dendritic cells, implications on function from studies of the afferent lymph veiled cell. Vet. Immunol. Immunopathol. 77, 1–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Belz, G.T., Heath, W.R. & Carbone, F.R. The role of dendritic cell subsets in selection between tolerance and immunity. Immunol. Cell Biol. 80, 463–468 (2002).

    Article  PubMed  Google Scholar 

  28. Despars, G. & O'Neill, H.C. A role for niches in the development of a multiplicity of dendritic cell subsets. Exp. Hematol. 32, 235–243 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Iwasaki, A. & Kelsall, B.L. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190, 229–239 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gliddon, D.R., Hope, J.C., Brooke, G.P. & Howard, C.J. DEC-205 expression on migrating dendritic cells in afferent lymph. Immunology 111, 262–272 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the bovine immunology groups at the Institute of Animal Health, Compton, UK. We gratefully acknowledge the staff of the animal facilities for care of the cattle. The work was funded by the Biotechnology and Biological Sciences Research Council, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne C Hope.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hope, J., Howard, C., Prentice, H. et al. Isolation and purification of afferent lymph dendritic cells that drain the skin of cattle. Nat Protoc 1, 982–987 (2006). https://doi.org/10.1038/nprot.2006.125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.125

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing