Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In situ observation of shear-driven amorphization in silicon crystals

Abstract

Amorphous materials are used for both structural and functional applications1,2,3,4,5. An amorphous solid usually forms under driven conditions such as melt quenching4, irradiation6, shock loading7,8,9 or severe mechanical deformation10. Such extreme conditions impose significant challenges on the direct observation of the amorphization process. Various experimental techniques have been used to detect how the amorphous phases form, including synchrotron X-ray diffraction11, transmission electron microscopy (TEM)12 and Raman spectroscopy13, but a dynamic, atomistic characterization has remained elusive. Here, by using in situ high-resolution TEM (HRTEM), we show the dynamic amorphization process in silicon nanocrystals during mechanical straining on the atomic scale. We find that shear-driven amorphization occurs in a dominant shear band starting with the diamond-cubic (dc) to diamond-hexagonal (dh) phase transition and then proceeds by dislocation nucleation and accumulation in the newly formed dh-Si phase. This process leads to the formation of an amorphous Si (a-Si) band, embedded with dh-Si nanodomains. The amorphization of dc-Si via an intermediate dh-Si phase is a previously unknown pathway of solid-state amorphization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In situ TEM observation of deformation-induced dislocations and phase transformation in a 〈111〉-oriented Si nanopillar under compression.
Figure 2: Shear-driven amorphization in a dh-Si strip.
Figure 3: Atomic structures in a fully developed a-Si shear band.
Figure 4: Deformation-induced partial dislocations in a 〈100〉-oriented Si nanopillar under compression.

Similar content being viewed by others

References

  1. Johnson, W. L. Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci. 30, 81–134 (1986).

    Article  CAS  Google Scholar 

  2. Mott, N. F. Electrons in disordered structures. Adv. Phys. 50, 865–945 (2001).

    Article  Google Scholar 

  3. Treacy, M. M. & Borisenko, K. B. The local structure of amorphous silicon. Science 335, 950–953 (2012).

    Article  CAS  Google Scholar 

  4. Zhong, L., Wang, J., Sheng, H., Zhang, Z. & Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014).

    Article  CAS  Google Scholar 

  5. Bauer, J., Schroer, A., Schwaiger, R. & Kraft, O. Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016).

    Article  CAS  Google Scholar 

  6. Takeda, S. & Yamasaki, J. Amorphization in silicon by electron irradiation. Phys. Rev. Lett. 83, 320–323 (1999).

    Article  CAS  Google Scholar 

  7. Gamero-Castaño, M., Torrents, A., Valdevit, L. & Zheng, J. Pressure-induced amorphization in silicon caused by the impact of electrosprayed nanodroplets. Phys. Rev. Lett. 105, 145701 (2010).

    Article  Google Scholar 

  8. Zhao, S. et al. Amorphization and nanocrystallization of silicon under shock compression. Acta Mater. 103, 519–533 (2016).

    Article  CAS  Google Scholar 

  9. Zhao, S. et al. Pressure and shear-induced amorphization of silicon. Extrem. Mech. Lett. 5, 74–80 (2015).

    Article  Google Scholar 

  10. Huang, J. Y., Yasuda, H. & Mori, H. Deformation induced amorphization in ball milled silicon. Phil. Mag. Lett. 79, 305–314 (1999).

    Article  CAS  Google Scholar 

  11. Deb, S. K., Wilding, M., Somayazulu, M. & McMillan, P. F. Pressure-induced amorphization and an amorphous-amorphous transition in densified porous Si. Nature 414, 528–530 (2001).

    Article  CAS  Google Scholar 

  12. Minowa, K. & Sumino, K. Stress-induced amorphization of silicon crystal by mechanical scratching. Phys. Rev. Lett. 69, 320–322 (1992).

    Article  CAS  Google Scholar 

  13. Wu, K., Yan, X. Q. & Chen, M. W. In situ Raman characterization of reversible phase transition in stress-induced amorphous silicon. Appl. Phys. Lett. 91, 101903 (2007).

    Article  Google Scholar 

  14. Cook, R. F. Strength and sharp contact fracture of silicon. J. Mater. Sci. 41, 841–872 (2006).

    Article  CAS  Google Scholar 

  15. Kailer, A., Gogotsi, Y. G. & Nickel, K. G. Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81, 3057–3063 (1997).

    Article  CAS  Google Scholar 

  16. Domnich, V. & Gogotsi, Y. Phase transformation in silicon under contact loading. Rev. Adv. Mater. Sci. 3, 1–36 (2002).

    Article  CAS  Google Scholar 

  17. Ruffell, S., Bradby, J. E., Williams, J. S. & Munroe, P. Formation and growth of nanoindentation-induced high pressure phases in crystalline and amorphous silicon. J. Appl. Phys. 102, 063521 (2007).

    Article  Google Scholar 

  18. Minor, A. M. et al. Room temperature dislocation plasticity in silicon. Phil. Mag. 85, 323–330 (2005).

    Article  CAS  Google Scholar 

  19. Han, X. D. et al. Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19, 2112–2118 (2007).

    Article  CAS  Google Scholar 

  20. Östlund, F. et al. Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Funct. Mater. 19, 2439–2444 (2009).

    Article  Google Scholar 

  21. Gerberich, W. W., Stauffer, D. D., Beaber, A. R. & Tymiak, N. I. A brittleness transition in silicon due to scale. J. Mater. Res. 27, 552–561 (2011).

    Article  Google Scholar 

  22. Wagner, A. J., Hintsala, E. D., Kumar, P., Gerberich, W. W. & Mkhoyan, K. A. Mechanisms of plasticity in near-theoretical strength sub-100 nm Si nanocubes. Acta Mater. 100, 256–265 (2015).

    Article  CAS  Google Scholar 

  23. Huang, S., Zhang, S., Belytschko, T., Terdalkar, S. S. & Zhu, T. Mechanics of nanocrack: fracture, dislocation emission, and amorphization. J. Mech. Phys. Solids 57, 840–850 (2009).

    Article  CAS  Google Scholar 

  24. Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater. Sci. 55, 710–757 (2010).

    Article  Google Scholar 

  25. Chrobak, D. et al. Deconfinement leads to changes in the nanoscale plasticity of silicon. Nat. Nanotech. 6, 480–484 (2011).

    Article  CAS  Google Scholar 

  26. Pizzagalli, L., Godet, J., Guénolé, J. & Brochard, S. Dislocation cores in silicon: new aspects from numerical simulations. J. Phys. 281, 012002 (2011).

    Google Scholar 

  27. Rabier, J. et al. Plastic deformation of silicon between 20 °C and 425 °C. Phys. Status Solidi C 4, 3110–3114 (2007).

    Article  CAS  Google Scholar 

  28. Kasper, J. S. & Wentorf, R. H. Hexagonal (wurtzite) silicon. Science 197, 599 (1977).

    Article  CAS  Google Scholar 

  29. Pirouz, P., Chaim, R., Dahmen, U. & Westmacott, K. H. The martensitic transformation in silicon-I. Experimental observation. Acta Metall. Mater. 38, 313–322 (1990).

    Article  CAS  Google Scholar 

  30. Tan, T. Y., Föll, H. & Hu, S. M. On the diamond-cubic to hexagonal phase transformation in silicon. Phil. Mag. A 44, 127–140 (1981).

    Article  CAS  Google Scholar 

  31. Rudee, M. L. & Howie, A. The structure of amorphous Si and Ge. Phil. Mag. 25, 1001–1007 (1972).

    Article  CAS  Google Scholar 

  32. Borisenko, K. B. et al. Medium-range order in amorphous silicon investigated by constrained structural relaxation of two-body and four-body electron diffraction data. Acta Mater. 60, 359–375 (2012).

    Article  CAS  Google Scholar 

  33. Yin, M. T. & Cohen, M. L. Microscopic theory of the phase transformation and lattice dynamics of Si. Phys. Rev. Lett. 45, 1004–1007 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.X.M. acknowledges support from the National Science Foundation (NSF, CMMI 1536811) through the University of Pittsburgh. T.Z. acknowledges support from the NSF (DMR 1410331). This work was performed, in part, at the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy, Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the US Department of Energy (contract no. DE-AC05-76RLO1830). This work was performed in part at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy Office of Science. The authors thank J.Y. Huang for his support on TEM, Z. Zeng for assistance with atomistic simulations and B.M. Nguyen in Los Alamos National Laboratory, X. Dai in Nanyang Technology University, and S. Krylyuk and A.V. Davydov at the National Institute of Standards and Technology for supplying samples.

Author information

Authors and Affiliations

Authors

Contributions

S.X.M., T.Z. and C.M.W. conceived and designed the experiment. Y.H. and L.Z. conducted the TEM experiments. F.F. and T.Z. performed the computer simulations and theoretical analysis. Y.H., T.Z. and S.X.M. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Chongmin Wang, Ting Zhu or Scott X. Mao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1401 kb)

Supplementary information

Supplementary Movie 1 (MOV 15136 kb)

Supplementary information

Supplementary Movie 2 (MOV 9760 kb)

Supplementary information

Supplementary Movie 3 (MOV 691 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Zhong, L., Fan, F. et al. In situ observation of shear-driven amorphization in silicon crystals. Nature Nanotech 11, 866–871 (2016). https://doi.org/10.1038/nnano.2016.166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing