Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation

Abstract

Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research1, but can enable applications in nanomedicine2, photocatalysis3 and background-free biosensing4. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed5,6,7,8. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation5. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry9 displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of 5 × 10–10 W–1, enabling a second harmonic photon yield higher than 3 × 106 photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Working principle and design of the mode-matched SHG antenna.
Figure 2: Nanofabricated ultrasmooth antennas with tailored geometry.
Figure 3: Single nanostructure scattering spectra as a function of antenna geometry.
Figure 4: Confocal maps and characterization of SHG from the tunable antenna array.

References

  1. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nature Photon. 6, 737–748 (2014).

    Article  Google Scholar 

  2. Kachynski, A. V. et al. Photodynamic therapy by in situ nonlinear photon conversion. Nature Photon. 8, 455–461 (2014).

    Article  CAS  Google Scholar 

  3. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photon. 8, 95–103 (2014).

    Article  CAS  Google Scholar 

  4. Kotov, N. The only way is up. Nature Mater. 10, 903–904 (2011).

    Article  CAS  Google Scholar 

  5. Hanke, T. et al. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett. 103, 257404 (2009).

    Article  CAS  Google Scholar 

  6. Aouani, H., Rahmani, M., Navarro-Cía, M. & Maier, S. A. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nature Nanotech. 9, 290–294 (2014).

    Article  CAS  Google Scholar 

  7. Metzger, B. et al. Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. Nano Lett. 14, 2867–2872 (2014).

    Article  CAS  Google Scholar 

  8. Metzger, B., Schumacher, T., Hentschel, M., Lippitz, M. & Giessen, H. Third harmonic mechanism in complex plasmonic Fano structures. ACS Photon. 1, 471–476 (2014).

    Article  CAS  Google Scholar 

  9. Finazzi, M., Biagioni, P., Celebrano, M. & Duò, L. Selection rules for second-harmonic generation in nanoparticles. Phys. Rev. B 76, 125414 (2007).

    Article  Google Scholar 

  10. Zavelani-Rossi, M. et al. Near-field second-harmonic generation in single gold nanoparticles. Appl. Phys. Lett. 92, 093119 (2008).

    Article  Google Scholar 

  11. Butet, J. et al. Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. Nano Lett. 10, 1717–1721 (2010).

    Article  CAS  Google Scholar 

  12. Hubert, C. et al. Role of surface plasmon in second harmonic generation from gold nanorods. Appl. Phys. Lett. 90, 181105 (2007).

    Article  Google Scholar 

  13. Thyagarajan, K., Rivier, S., Lovera, A. & Martin, O. J. F. Enhanced second-harmonic generation from double resonant plasmonic antennae. Opt. Express 20, 12860–12865 (2012).

    Article  Google Scholar 

  14. Aouani, H. et al. Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. Nano Lett. 12, 4997–5002 (2012).

    Article  CAS  Google Scholar 

  15. Finazzi, M. & Ciccacci, F. Plasmon–photon interaction in metal nanoparticles: second-quantization perturbative approach. Phys. Rev. B 86, 035428 (2012).

    Article  Google Scholar 

  16. Butet, J., Dutta-Gupta, S. & Martin, O. J. F. Surface second-harmonic generation from coupled spherical plasmonic nanoparticles: eigenmode analysis and symmetry properties. Phys. Rev. B 89, 245449 (2014).

    Article  Google Scholar 

  17. Stokes, N., Cortie, M. B., Davis, T. J. & McDonagh, A. M. Plasmon resonances in V-shaped gold nanostructures. Plasmonics 7, 235–243 (2012).

    Article  CAS  Google Scholar 

  18. Vercruysse, D. et al. Unidirectional side scattering of light by a single-element nanoantenna. Nano Lett. 13, 3843–3849 (2013).

    Article  CAS  Google Scholar 

  19. Czaplicki, R., Husu, H., Siikanen, R., Mäkitalo, J. & Kauranen, M. Enhancement of second-harmonic generation from metal nanoparticles by passive elements. Phys. Rev. Lett. 110, 093902 (2013).

    Article  Google Scholar 

  20. Biagioni, P., Huang, J. -S. & Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75, 024402 (2012).

    Article  Google Scholar 

  21. Huang, J. -S. et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Commun. 1, 150 (2010).

    Article  Google Scholar 

  22. Celebrano, M. et al. Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale. Rev. Sci. Instrum. 80, 033704 (2009).

    Article  Google Scholar 

  23. Ginzburg, P. et al. Nonlinearly coupled localized plasmon resonances: resonant second-harmonic generation. Phys. Rev. B 86, 085422 (2012).

    Article  Google Scholar 

  24. Zhang, Y., Grady, N. K., Ayala-Orozco, C. & Halas, N. J. Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett. 11, 5519–5523 (2011).

    Article  CAS  Google Scholar 

  25. Rodrigo, S. G., Harutyunyan, H. & Novotny, L. Coherent control of light scattering from nanostructured materials by second-harmonic generation. Phys. Rev. Lett. 110, 177405 (2013).

    Article  Google Scholar 

  26. Aćimović, S. S., Kreuzer, M. P., González, M. U. & Quidant, R. Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 3, 1231–1237 (2009).

    Article  Google Scholar 

  27. Becker, J. et al. The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5, 161–167 (2010).

    Article  CAS  Google Scholar 

  28. Cattoni, A. et al. λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. Nano Lett. 11, 3557–3563 (2011).

    Article  CAS  Google Scholar 

  29. Cheng, F., Yang, X. & Gao, J. Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers. Opt. Lett. 39, 3185–3188 (2014).

    Article  Google Scholar 

  30. Etchegoin, P. G., le Ru, E. C. & Meyer, M. An analytic model for the optical properties of gold. J. Chem. Phys. 125, 164705 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank V. Kumar and T. Zandrini for valuable help and R. Sapienza for stimulating discussions. M.C., M.F., C.D.A. and A.L. acknowledge support from Fondazione Cariplo through the project SHAPES (2013-0736). G.C. acknowledges support from the EC through the Graphene Flagship project (CNECT-ICT-604391). This work was performed in the context of the European COST Action MP1302 Nanospectroscopy.

Author information

Authors and Affiliations

Authors

Contributions

M.C. and M.F. conceived the project. X.W. and B.H. fabricated the sample. S.G. and B.H. performed linear spectroscopy. M.C., M.B. and P.B. performed linear and nonlinear microscopy experiments and FDTD simulations. A.L. and C.D.A. performed FEM simulations. G.C. and R.O. designed and optimized the nonlinear excitation set-up. M.C. and M.F. analysed the data and co-wrote the manuscript. L.D. and F.C. supervised the project. All authors discussed the results and participated in manuscript preparation.

Corresponding author

Correspondence to Michele Celebrano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3562 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Celebrano, M., Wu, X., Baselli, M. et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nature Nanotech 10, 412–417 (2015). https://doi.org/10.1038/nnano.2015.69

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.69

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research