Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nonreciprocal thermal photonics

Abstract

Thermal nanophotonics has undergone a revolution in recent decades, benefiting from in-depth studies in nano-optics and breakthroughs in nanotechnologies. The majority of thermal devices are constrained by Kirchhoff’s law of thermal radiation, whereby spectral directional absorptivity and emissivity are identical according to Lorentz reciprocity. This restriction introduces an intrinsic loss in a plethora of energy technologies and prevents us from controlling emission and absorption independently. Recently, there has been considerable progress in realizing nonreciprocal radiation to overcome these limitations. Here we summarize the fundamental physics of nonreciprocal radiation, lay out different approaches to generalize Kirchhoff’s law, and highlight several promising nonreciprocal thermal applications. This comprehensive overview of nonreciprocal thermal photonics may reveal new physics, unprecedented nonreciprocal effects and broader potential applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamental physics of conventional Kirchhoff’s law and generalized Kirchhoff’s law.
Fig. 2: Nonreciprocal control of absorption and emission.
Fig. 3: Nonreciprocal energy harvesting and conversion.
Fig. 4: Near-field nonreciprocal thermal radiative heat transfer.

Similar content being viewed by others

Data availability

All associated data and materials are available in the manuscript.

References

  1. Baranov, D. G. et al. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019).

    ADS  Google Scholar 

  2. Fan, S. Thermal photonics and energy applications. Joule 1, 264–273 (2017).

    Google Scholar 

  3. Liu, T., Guo, C., Li, W. & Fan, S. Thermal photonics with broken symmetries. eLight 2, 25 (2022).

    Google Scholar 

  4. Wang, X. et al. Observation of nonvanishing optical helicity in thermal radiation from symmetry-broken metasurfaces. Sci. Adv. 9, eade4203 (2023).

    ADS  Google Scholar 

  5. Branham, M. S. et al. 15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures. Adv. Mater. 27, 2182–2188 (2015).

    Google Scholar 

  6. Yu, Z., Raman, A. & Fan, S. Fundamental limit of nanophotonic light-trapping in solar cells. Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).

    ADS  Google Scholar 

  7. Burger, T., Sempere, C., Roy-Layinde, B. & Lenert, A. Present efficiencies and future opportunities in thermophotovoltaics. Joule 4, 1660–1680 (2020).

    Google Scholar 

  8. LaPotin, A. et al. Thermophotovoltaic efficiency of 40%. Nature 604, 287–291 (2022).

    ADS  Google Scholar 

  9. Fan, S. & Li, W. Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022).

    ADS  Google Scholar 

  10. Hsu, P.-C. et al. A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3, e1700895 (2017).

    ADS  Google Scholar 

  11. Li, D. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16, 153–158 (2021).

    ADS  Google Scholar 

  12. Tan, X. et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nat. Commun. 11, 5245 (2020).

    ADS  Google Scholar 

  13. Cattoni, A. et al. λ3/1,000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. Nano Lett. 11, 3557–3563 (2011).

    ADS  Google Scholar 

  14. Kirchhoff, G. I. On the relation between the radiating and absorbing powers of different bodies for light and heat. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 20, 1–21 (1860).

    Google Scholar 

  15. Siegel, R. Thermal Radiation Heat Transfer 4th edn (CRC Press, 2001).

  16. Landsberg, P. T. & Tonge, G. Thermodynamic energy conversion efficiencies. J. Appl. Phys. 51, R1–R20 (1980).

    ADS  Google Scholar 

  17. Snyder, W. C., Wan, Z. & Li, X. Thermodynamic constraints on reflectance reciprocity and Kirchhoff’s law. Appl. Opt. 37, 3464–3470 (1998).

    Google Scholar 

  18. Bergman, T. L., Incropera, F. P., DeWitt, D. P. & Lavine, A. S. Fundamentals of Heat and Mass Transfer (Wiley, 2011).

  19. Greffet, J.-J. & Nieto-Vesperinas, M. Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law. J. Opt. Soc. Am. A 15, 2735–2744 (1998).

    MathSciNet  Google Scholar 

  20. Tsurimaki, Y. et al. Large nonreciprocal absorption and emission of radiation in type-I Weyl semimetals with time reversal symmetry breaking. Phys. Rev. B 101, 165426 (2020).

    ADS  Google Scholar 

  21. Zhu, L. & Fan, S. Near-complete violation of detailed balance in thermal radiation. Phys. Rev. B 90, 220301 (2014).

    ADS  Google Scholar 

  22. Bertolotti, M. Waves and fields in optoelectronics. Opt. Acta 32, 748 (1985).

    ADS  Google Scholar 

  23. Miller, D. A. B., Zhu, L. & Fan, S. Universal modal radiation laws for all thermal emitters. Proc. Natl Acad. Sci. USA 114, 4336–4341 (2017).

    ADS  Google Scholar 

  24. Guo, C., Zhao, B. & Fan, S. Adjoint Kirchhoff’s law and general symmetry implications for all thermal emitters. Phys. Rev. X 12, 021023 (2022).

    Google Scholar 

  25. Khandekar, C., Khosravi, F., Li, Z. & Jacob, Z. New spin-resolved thermal radiation laws for nonreciprocal bianisotropic media. New J. Phys. 22, 123005 (2020).

    ADS  MathSciNet  Google Scholar 

  26. Zhao, B. et al. Near-complete violation of Kirchhoff’s law of thermal radiation with a 0.3 T magnetic field. Opt. Lett. 44, 4203–4206 (2019).

    ADS  Google Scholar 

  27. Zhao, B., Guo, C., Garcia, C. A. C., Narang, P. & Fan, S. Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals. Nano Lett. 20, 1923–1927 (2020).

    ADS  Google Scholar 

  28. Shayegan, K. J., Zhao, B., Kim, Y., Fan, S. & Atwater, H. A. Nonreciprocal infrared absorption via resonant magneto-optical coupling to InAs. Sci. Adv. 8, eabm4308 (2022).

    Google Scholar 

  29. Liu, M. Q. & Zhao, C. Y. Near-infrared nonreciprocal thermal emitters induced by asymmetric embedded eigenstates. Inter. J. Heat Mass Transf. 186, 122435 (2022).

    Google Scholar 

  30. Liu, M. et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films. Nat. Mater. 22, 1196–1202 (2023).

    ADS  Google Scholar 

  31. Seeger, K. Semiconductor Physics (Springer Science & Business Media, 2013).

  32. Armelles, G., Cebollada, A., García-Martín, A. & González, M. U. Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 1, 10–35 (2013).

    Google Scholar 

  33. Asadchy, V. S., Guo, C., Zhao, B. & Fan, S. Sub‐wavelength passive optical isolators using photonic structures based on Weyl semimetals. Adv. Opt. Mater. 8, 2000100 (2020).

    Google Scholar 

  34. Stadler, B. J. H. & Mizumoto, T. Integrated magneto-optical materials and isolators: a review. IEEE Photon. J. 6, 1–15 (2014).

    Google Scholar 

  35. Del Bino, L. et al. Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect. Optica 5, 279–282 (2018).

    Google Scholar 

  36. Greidanus, F. J. A. M. & Klahn, S. Magneto-optical recording and data storage materials. Adv. Mater. 1, 45–51 (1989).

    Google Scholar 

  37. Stenzel, R. L. Microwave Absorption And Emission From Magnetized Afterglow Plasmas (California Institute of Technology, 1970).

  38. Bornatici, M. Theory of electron cyclotron absorption of magnetized plasmas. Plasma Phys. 24, 629–638 (1982).

    ADS  Google Scholar 

  39. Fidone, I., Giruzzi, G. & Chiozzi, G. Emission and absorption profiles in electron cyclotron radiation for nonthermal plasmas. Plasma Phys. Control. Fusion 31, 2003–2010 (1989).

    ADS  Google Scholar 

  40. Bornatici, M. & Engelmann, F. Electron‐cyclotron absorption and emission: ‘Vexatae quaestiones’. Phys. Plasmas 1, 189–198 (1994).

    ADS  Google Scholar 

  41. Madelung, O. Semiconductors: Data Handbook (Springer Science & Business Media, 2004).

  42. Liu, M. et al. Evolution and nonreciprocity of loss-induced topological phase singularity pairs. Phys. Rev. Lett. 127, 266101 (2021).

    ADS  Google Scholar 

  43. Alù, A., Silveirinha, M. G., Salandrino, A. & Engheta, N. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007).

    ADS  Google Scholar 

  44. Sakotic, Z., Krasnok, A., Cselyuszka, N., Jankovic, N. & Alú, A. Berreman embedded eigenstates for narrow-band absorption and thermal emission. Phys. Rev. Appl. 13, 064073 (2020).

    ADS  Google Scholar 

  45. Campione, S., Brener, I. & Marquier, F. Theory of epsilon-near-zero modes in ultrathin films. Phys. Rev. B 91, 121408 (2015).

    ADS  Google Scholar 

  46. Shayegan, K. J., Biswas, S., Zhao, B., Fan, S. & Atwater, H. A. Direct observation of the violation of Kirchhoff’s law of thermal radiation. Nat. Photon. 17, 891–896 (2023).

    ADS  Google Scholar 

  47. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  MathSciNet  Google Scholar 

  48. Li, Z. et al. Weyl semimetal TaAs: crystal growth, morphology and thermodynamics. Cryst. Growth Design 16, 1172–1175 (2016).

    Google Scholar 

  49. Belopolski, I. et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278–1281 (2019).

    ADS  Google Scholar 

  50. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    ADS  Google Scholar 

  51. Xu, B. et al. Optical spectroscopy of the Weyl semimetal TaAs. Phys. Rev. B 93, 121110 (2016).

    ADS  Google Scholar 

  52. Wu, J. & Qing, Y. M. Strong nonreciprocal radiation with topological photonic crystal heterostructure. Appl. Phys. Lett. 121, 112201 (2022).

    ADS  Google Scholar 

  53. Zhao, B. et al. Nonreciprocal thermal emitters using metasurfaces with multiple diffraction channels. Phys. Rev. Applied 16, 064001 (2021).

    ADS  Google Scholar 

  54. Ghanekar, A., Wang, J., Guo, C., Fan, S. & Povinelli, M. L. Nonreciprocal thermal emission using spatiotemporal modulation of graphene. ACS Photonics 10, 170–178 (2023).

    Google Scholar 

  55. Ghanekar, A., Wang, J., Fan, S. & Povinelli, M. L. Violation of Kirchhoff’s law of thermal radiation with space-time modulated grating. ACS Photonics 9, 1157–1164 (2022).

    Google Scholar 

  56. Bloembergen, N. Conservation laws in nonlinear optics*. J. Opt. Soc. Am. 70, 1429–1436 (1980).

    ADS  Google Scholar 

  57. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

    ADS  Google Scholar 

  58. Hadad, Y., Soric, J. C. & Alu, A. Breaking temporal symmetries for emission and absorption. Proc. Natl Acad. Sci. USA 113, 3471–3475 (2016).

    ADS  Google Scholar 

  59. Buddhiraju, S., Li, W. & Fan, S. Photonic refrigeration from time-modulated thermal emission. Phys. Rev. Lett. 124, 077402 (2020).

    ADS  Google Scholar 

  60. Khandekar, C., Pick, A., Johnson, S. G. & Rodriguez, A. W. Radiative heat transfer in nonlinear Kerr media. Phys. Rev. B 91, 115406 (2015).

    ADS  Google Scholar 

  61. Khandekar, C., Yang, L., Rodriguez, A. W. & Jacob, Z. Quantum nonlinear mixing of thermal photons to surpass the blackbody limit. Opt. Express 28, 2045–2059 (2020).

    ADS  Google Scholar 

  62. Khandekar, C., Lin, Z. & Rodriguez, A. W. Thermal radiation from optically driven Kerr (χ(3)) photonic cavities. Appl. Phys. Lett. 106, 151109 (2015).

    ADS  Google Scholar 

  63. Soo, H. & Krüger, M. Fluctuational electrodynamics for nonlinear materials in and out of thermal equilibrium. Phys. Rev. B 97, 045412 (2018).

    ADS  Google Scholar 

  64. Khandekar, C. & Rodriguez, A. W. Near-field thermal upconversion and energy transfer through a Kerr medium. Opt. Express 25, 23164 (2017).

    ADS  Google Scholar 

  65. Khandekar, C., Messina, R. & Rodriguez, A. W. Near-field refrigeration and tunable heat exchange through four-wave mixing. AIP Adv. 8, 055029 (2018).

    ADS  Google Scholar 

  66. Ghashami, M. et al. Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients. Phys. Rev. Lett. 120, 175901 (2018).

    ADS  Google Scholar 

  67. Lim, M., Song, J., Lee, S. S. & Lee, B. J. Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons. Nat. Commun. 9, 4302 (2018).

    ADS  Google Scholar 

  68. Yang, J. et al. Observing of the super-Planckian near-field thermal radiation between graphene sheets. Nat. Commun. 9, 4033 (2018).

    ADS  Google Scholar 

  69. Shi, K., Chen, Z., Xu, X., Evans, J. & He, S. Optimized colossal near‐field thermal radiation enabled by manipulating coupled plasmon polariton geometry. Adv. Mater. 33, 2106097 (2021).

    Google Scholar 

  70. Green, M. A. Time-asymmetric photovoltaics. Nano Lett. 12, 5985–5988 (2012).

    ADS  Google Scholar 

  71. Park, Y., Zhao, B. & Fan, S. Reaching the ultimate efficiency of solar energy harvesting with a nonreciprocal multijunction solar cell. Nano Lett. 22, 448–452 (2022).

    ADS  Google Scholar 

  72. Jafari Ghalekohneh, S. & Zhao, B. Nonreciprocal solar thermophotovoltaics. Phys. Rev. Appl. 18, 034083 (2022).

    ADS  Google Scholar 

  73. Park, Y., Omair, Z. & Fan, S. Nonreciprocal thermophotovoltaic systems. ACS Photonics 9, 3943–3949 (2022).

    Google Scholar 

  74. Ben-Abdallah, P. Photon thermal Hall effect. Phys. Rev. Lett. 116, 084301 (2016).

    ADS  Google Scholar 

  75. Fernández-Alcázar, L. J., Kononchuk, R., Li, H. & Kottos, T. Extreme nonreciprocal near-field thermal radiation via Floquet photonics. Phys. Rev. Lett. 126, 204101 (2021).

    ADS  Google Scholar 

  76. Ott, A., Messina, R., Ben-Abdallah, P. & Biehs, S.-A. Radiative thermal diode driven by nonreciprocal surface waves. Appl. Phys. Lett. 114, 163105 (2019).

    ADS  Google Scholar 

  77. Pusch, A., Gordon, J. M., Mellor, A., Krich, J. J. & Ekins-Daukes, N. J. Fundamental efficiency bounds for the conversion of a radiative heat engine’s own emission into work. Phys. Rev. Appl. 12, 064018 (2019).

    ADS  Google Scholar 

  78. Ries, H. Complete and reversible absorption of radiation. Appl. Phys. B 32, 153–156 (1983).

    ADS  Google Scholar 

  79. Zhang, Z. & Zhu, L. Nonreciprocal thermal photonics for energy conversion and radiative heat transfer. Phys. Rev. Appl. 18, 027001 (2022).

    ADS  Google Scholar 

  80. Marti, A. & Arafijo, G. L. Limiting efficiencies for photovoltaic energy conversion in multigap systems. Sol. Energ. Mat. Sol. C 43, 203–222 (1996).

    Google Scholar 

  81. Buddhiraju, S., Santhanam, P. & Fan, S. Thermodynamic limits of energy harvesting from outgoing thermal radiation. Proc. Natl Acad. Sci. USA 115, E3609–E3615 (2018).

    ADS  Google Scholar 

  82. Byrnes, S. J., Blanchard, R. & Capasso, F. Harvesting renewable energy from Earth’s mid-infrared emissions. Proc. Natl Acad. Sci. USA 111, 3927–3932 (2014).

    ADS  Google Scholar 

  83. Li, W., Buddhiraju, S. & Fan, S. Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space. Light Sci. Appl. 9, 68 (2020).

    ADS  Google Scholar 

  84. Park, Y. et al. Violating Kirchhoff’s law of thermal radiation in semitransparent structures. ACS Photonics 8, 2417–2424 (2021).

    MathSciNet  Google Scholar 

  85. Zhu, L. & Fan, S. Persistent directional current at equilibrium in nonreciprocal many-body near field electromagnetic heat transfer. Phys. Rev. Lett. 117, 134303 (2016).

    ADS  Google Scholar 

  86. Zhu, L., Guo, Y. & Fan, S. Theory of many-body radiative heat transfer without the constraint of reciprocity. Phys. Rev. B 97, 094302 (2018).

    ADS  Google Scholar 

  87. Ott, A., Biehs, S.-A. & Ben-Abdallah, P. Anomalous photon thermal Hall effect. Phys. Rev. B 101, 241411 (2020).

    ADS  Google Scholar 

  88. Guo, C., Guo, Y. & Fan, S. Relation between photon thermal Hall effect and persistent heat current in nonreciprocal radiative heat transfer. Phys. Rev. B 100, 205416 (2019).

    ADS  Google Scholar 

  89. Ferreiros, Y., Zyuzin, A. A. & Bardarson, J. H. Anomalous Nernst and thermal Hall effects in tilted Weyl semimetals. Phys. Rev. B 96, 115202 (2017).

    ADS  Google Scholar 

  90. Khandekar, C. & Jacob, Z. Thermal spin photonics in the near-field of nonreciprocal media. New J. Phys. 21, 103030 (2019).

    ADS  MathSciNet  Google Scholar 

  91. Ott, A., Ben-Abdallah, P. & Biehs, S.-A. Circular heat and momentum flux radiated by magneto-optical nanoparticles. Phys. Rev. B 97, 205414 (2018).

    ADS  Google Scholar 

  92. Ott, A. & Biehs, S.-A. Thermal rectification and spin-spin coupling of nonreciprocal localized and surface modes. Phys. Rev. B 101, 155428 (2020).

    ADS  Google Scholar 

  93. Li, Q., He, H., Chen, Q. & Song, B. Thin-film radiative thermal diode with large rectification. Phys. Rev. Appl. 16, 014069 (2021).

    ADS  Google Scholar 

  94. Landrieux, S., Ben-Abdallah, P. & Messina, R. Graphene-based enhancement of near-field radiative-heat-transfer rectification. Appl. Phys. Lett. 120, 143502 (2022).

    ADS  Google Scholar 

  95. Guo, C., Zhao, B., Huang, D. & Fan, S. Radiative thermal router based on tunable magnetic Weyl semimetals. ACS Photonics 7, 3257–3263 (2020).

    Google Scholar 

  96. Latella, I. & Ben-Abdallah, P. Giant thermal magnetoresistance in plasmonic structures. Phys. Rev. Lett. 118, 173902 (2017).

    ADS  Google Scholar 

  97. Abraham Ekeroth, R. M., Ben-Abdallah, P., Cuevas, J. C. & García-Martín, A. Anisotropic thermal magnetoresistance for an active control of radiative heat transfer. ACS Photonics 5, 705–710 (2018).

    Google Scholar 

  98. Zhou, C.-L., Qu, L., Zhang, Y. & Yi, H.-L. Enhancement and active mediation of near-field radiative heat transfer through multiple nonreciprocal graphene surface plasmons. Phys. Rev. B 102, 245421 (2020).

    ADS  Google Scholar 

  99. Wu, J., Wu, F., Zhao, T., Antezza, M. & Wu, X. Dual-band nonreciprocal thermal radiation by coupling optical Tamm states in magnetophotonic multilayers. Int. J. Therm. Sci. 175, 107457 (2022).

    Google Scholar 

  100. Liu, M. et al. Spectral phase singularity and topological behavior in perfect absorption. Phys. Rev. B 107, L241403 (2023).

    ADS  Google Scholar 

  101. Ignatyeva, D. O. et al. All-dielectric magnetic metasurface for advanced light control in dual polarizations combined with high-Q resonances. Nat. Commun. 11, 5487 (2020).

    ADS  Google Scholar 

  102. Yang, W. et al. Observation of optical gyromagnetic properties in a magneto-plasmonic metamaterial. Nat. Commun. 13, 1719 (2022).

    ADS  Google Scholar 

  103. Wang, X., Díaz-Rubio, A., Li, H., Tretyakov, S. A. & Alù, A. Theory and design of multifunctional space-time metasurfaces. Phys. Rev. Appl. 13, 044040 (2020).

    ADS  Google Scholar 

  104. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    ADS  Google Scholar 

  105. Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).

    ADS  Google Scholar 

  106. Chen, X. et al. Electrically tunable physical properties of two-dimensional materials. Nano Today 27, 99–119 (2019).

    Google Scholar 

  107. Inoue, T., Zoysa, M. D., Asano, T. & Noda, S. Realization of dynamic thermal emission control. Nat. Mater. 13, 928–931 (2014).

    ADS  Google Scholar 

  108. Park, J. et al. Dynamic thermal emission control with InAs-based plasmonic metasurfaces. Sci. Adv. 4, eaat3163 (2018).

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (nos. 52306103 and 52120105009) and China Postdoctoral Science Foundation (nos. BX20220200 and 2023M732199). C.-W.Q. acknowledges financial support from the Ministry of Education, Republic of Singapore (grant no. A-8000107-01-00), and the National Research Foundation, Singapore (NRF), under NRF’s Medium Sized Centre: Singapore Hybrid-Integrated Next-Generation μElectronics (SHINE) Centre funding programme. S.F. acknowledges support from the US Department of Energy (grant no. DE-FG02-07ER46426).

Author information

Authors and Affiliations

Authors

Contributions

M.L. and C.-W.Q. conceived the ideas. All authors discussed the content of the Review. S.Y. and M.L. prepared the figures. M.L. and S.Y. wrote the paper with input and comments from all authors. C.Z., S.F. and C.-W.Q. supervised the project. All authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Changying Zhao, Shanhui Fan or Cheng-Wei Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Makoto Shimizu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Liu, M., Zhao, C. et al. Nonreciprocal thermal photonics. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01409-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing