Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical detection of coherent spin precession using the ballistic intrinsic spin Hall effect

Abstract

The spin–orbit interaction in two-dimensional electron systems provides an exceptionally rich area of research. Coherent spin precession in a Rashba effective magnetic field1,2 in the channel of a spin field-effect transistor3,4 and the spin Hall effect5,6,7 are the two most compelling topics in this area. Here, we combine these effects to provide a direct demonstration of the ballistic intrinsic spin Hall effect8 and to demonstrate a technique for an all-electric measurement of the Datta–Das3 conductance oscillation, that is, the oscillation in the source–drain conductance due to spin precession. Our hybrid device has a ferromagnet electrode as a spin injector and a spin Hall detector. Results from multiple devices with different channel lengths map out two full wavelengths of the Datta–Das oscillation. We also use the original Datta–Das technique with a single device of fixed length and measure the channel conductance as the gate voltage is varied. Our experiments show that the ballistic spin Hall effect can be used for efficient injection or detection of spin polarized electrons, thereby enabling the development of an integrated spin transistor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the spin Hall effect and experimental technique.
Figure 2: Spin precession-induced spin Hall effect.
Figure 3: Channel length dependence of the inverse spin Hall voltages.
Figure 4: Gate control of coherent spin precession in a spin-injected transistor with ISHE.

Similar content being viewed by others

References

  1. Bychkov Yu, A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).

    Google Scholar 

  2. Vas'ko, F. T. Spin splitting in the spectrum of two-dimensional electrons due to the surface potential. JETP Lett. 30, 541–544 (1979).

    Google Scholar 

  3. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  4. Koo, H. C. et al. Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009).

    Article  CAS  Google Scholar 

  5. Dyakonov, M. I. & Perel, V. I. Possibility of orienting electron spins with current. JETP Lett. 13, 467–470 (1971).

    Google Scholar 

  6. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  CAS  Google Scholar 

  7. Zhang, S. Spin Hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85, 393–396 (2000).

    Article  CAS  Google Scholar 

  8. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  CAS  Google Scholar 

  9. Dyakonov, M. I. & Khaetskii, A. V. in Spin Physics in Semiconductors (ed. Dyakonov, M. I.) 211–243 (Springer Verlag, 2008).

    Book  Google Scholar 

  10. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  CAS  Google Scholar 

  11. Seki, T. et al. Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nature Mater. 7, 125–129 (2008).

    Article  CAS  Google Scholar 

  12. Wunderlich, J. et al. Spin Hall effect transistor. Science 330, 1801–1804 (2010).

    Article  CAS  Google Scholar 

  13. Brüne, C. et al. Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures. Nature Phys. 6, 448–454 (2010).

    Article  Google Scholar 

  14. Koo, H. C. et al. Electrical spin injection and detection in an InAs quantum well. Appl. Phys. Lett. 90, 022101 (2007).

    Article  Google Scholar 

  15. Johnson, M. & Silsbee, R. H. Interfacial charge–spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    Article  CAS  Google Scholar 

  16. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Phys. 3, 197–202 (2007).

    Article  CAS  Google Scholar 

  17. Zainuddin, A. N. M., Hong, S., Siddiqui, L., Srinivasan, S. & Datta, S. Voltage-controlled spin precession. Phys. Rev. B 84, 165306 (2011).

    Article  Google Scholar 

  18. Nikolíc, B. K., Souma, S., Zârbo, L. P. & Sinova, J. Nonequilibrium spin Hall accumulation in ballistic semiconductor nanostructures. Phys. Rev. Lett. 95, 046601 (2005).

    Article  Google Scholar 

  19. Koo, H. C. et al. Gate modulation of spin precession in a semiconductor channel. J. Phys. D 44, 064006 (2011).

    Article  Google Scholar 

  20. Wunderlich, J. et al. Spin-injection Hall effect in a planar photovoltaic cell. Nature Phys. 5, 675–681 (2009).

    Article  CAS  Google Scholar 

  21. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin–torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  Google Scholar 

  22. Garlid, E. S., Hu, Q. O., Chan, M. K., Palmstrøm, C. J. & Crowell, P. A. Electrical measurement of the direct spin Hall effect in Fe/InxGa1−xAs heterostructures. Phys. Rev. Lett. 105, 156602 (2010).

    Article  CAS  Google Scholar 

  23. Ando, K. & Saitoh, E. Observation of the inverse spin Hall effect in silicon. Nature Phys. 3, 629 (2012).

    Google Scholar 

  24. Ford, A. et al. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 9, 360–365 (2009).

    Article  CAS  Google Scholar 

  25. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S.Y. Park and Y. Jo for providing the physical property measurement system. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (no. 2010-0017457) and the KIST Institutional Program. W.C. and H.C.K. acknowledge support from the KU-KIST Institutional Program. M.J. acknowledges support from the Office of Naval Research and the Nanoscience Institute of the Naval Research Laboratory (no. ELN02414855).

Author information

Authors and Affiliations

Authors

Contributions

H.C.K. planned the experiment and supervised the research. W.C. and H.C.K. fabricated the devices and collected the data. H.K., J.C. and S.H.H. contributed important ideas for sample fabrication. W.C., J.C., H.C.K. and M.J. analysed the data and wrote the manuscript with help from all co-authors.

Corresponding author

Correspondence to Hyun Cheol Koo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, W., Kim, Hj., Chang, J. et al. Electrical detection of coherent spin precession using the ballistic intrinsic spin Hall effect. Nature Nanotech 10, 666–670 (2015). https://doi.org/10.1038/nnano.2015.107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing