Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Manipulating surface states in topological insulator nanoribbons

Abstract

Topological insulators display unique properties, such as the quantum spin Hall effect, because time-reversal symmetry allows charges and spins to propagate along the edge or surface of the topological insulator without scattering1,2,3,4,5,6,7,8,9,10,11,12,13,14. However, the direct manipulation of these edge/surface states is difficult because they are significantly outnumbered by bulk carriers9,15,16. Here, we report experimental evidence for the modulation of these surface states by using a gate voltage to control quantum oscillations in Bi2Te3 nanoribbons. Surface conduction can be significantly enhanced by the gate voltage, with the mobility and Fermi velocity reaching values as high as ~5,800 cm2 V−1 s−1 and ~3.7 × 105 m s−1, respectively, with up to ~51% of the total conductance being due to the surface states. We also report the first observation of h/2e periodic oscillations, suggesting the presence of time-reversed paths with the same relative zero phase at the interference point16. The high surface conduction and ability to manipulate the surface states demonstrated here could lead to new applications in nanoelectronics and spintronics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structural characterizations of a Bi2Te3 nanoribbon.
Figure 2: Electrical transport measurements of a nanoribbon FET.
Figure 3: SdH oscillations in a nanoribbon FET.
Figure 4: Gate-modulated AB oscillations.

References

  1. 1

    Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Kane, C. L. & Mele, E. J. Topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Moore, J. Topological insulators: the next generation. Nature Phys. 5, 378–380 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  Google Scholar 

  6. 6

    Qu, D.-X., Hor, Y. S., Xiong, J., Cava, R. J. & Ong, N. P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3 . Science 329, 821–824 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, 398–402 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Zhang, T. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 103, 266803 (2009).

    Article  Google Scholar 

  9. 9

    Chen, J. et al. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3 . Phys. Rev. Lett. 105, 176602 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Qi, X.-L. & Zhang, S.-C. The quantum spin Hall effect and topological insulators. Phys. Today 63, 33–38 (January 2010).

    CAS  Article  Google Scholar 

  12. 12

    Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  Google Scholar 

  13. 13

    Ren, Z., Taskin, A. A., Sasaki, S., Segawa, K. & Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 82, 241306 (2010).

    Article  Google Scholar 

  14. 14

    Zhang, Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nature Phys. 6, 584–588 (2010).

    Article  Google Scholar 

  15. 15

    Checkelsky, J. G., Hor, Y. S., Cava, R. J. & Ong, N. P. Surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3 . http://arxiv.org/abs/1003.3883v1 (2010).

  16. 16

    Ihn, T. Topological insulators: oscillations in the ribbons. Nature Mater. 9, 187–188 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  Google Scholar 

  18. 18

    Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178–181 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Wang, Z. et al. Tuning carrier type and density in Bi2Se3 by Ca-doping. Appl. Phys. Lett. 97, 042112 (2010).

    Article  Google Scholar 

  21. 21

    Checkelsky, J. G. et al. Quantum interference in maroscopic crystals of nonmetallic Bi2Se3 . Phys. Rev. Lett. 103, 246601 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Peng, H. et al. Aharonov–Bohm interference in topological insulator nanoribbons. Nature Mater. 9, 225–229 (2009).

    Article  Google Scholar 

  23. 23

    Kong, D. S. et al. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 10, 2245–2250 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Eto, K., Ren, Z., Taskin, A. A., Segawa, K. & Ando, Y. Angular-dependent oscillations of the magnetoresistance in Bi2Se3 due to the three-dimensional bulk Fermi surface. Phys. Rev. B 81, 195309 (2010).

    Article  Google Scholar 

  25. 25

    Analytis, J. G. et al. Bulk Fermi surface coexistence with Dirac surface state in Bi2Se3: a comparison of photoemission and Shubnikov–de Haas measurements. Phys. Rev. B 81, 205407 (2010).

    Article  Google Scholar 

  26. 26

    Taskin, A. A. & Ando, Y. Quantum oscillations in a topological insulator Bi1-xSbx . Phys. Rev. B 80, 085303 (2009).

    Article  Google Scholar 

  27. 27

    Mallinson, R. B., Rayne, J. A. & Ure, R. W. de Haas–van Alphen effect in n-type Bi2Te3 . Phys. Rev. 175, 1049–1056 (1968).

    CAS  Article  Google Scholar 

  28. 28

    Chandrasekhar, V., Rooks, M. J., Wind, S. & Prober, D. E. Observation of Aharonov–Bohm electron interference effects with periods h/e and h/2e in individual micron-size, normal-metal rings. Phys. Rev. Lett. 55, 1610–1613 (1985).

    CAS  Article  Google Scholar 

  29. 29

    Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    Article  Google Scholar 

  30. 30

    Bardarson, J. H., Brouwer, P. W. & Moore, J. E. Aharonov–Bohm oscillations in disordered topological insulator nanowires. Phys. Rev. Lett. 105, 156803 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Focus Center Research Program-Center on Functional Engineered Nano Architectonics (FENA), Defense Advanced Research Projects Agency (DARPA) and the Australia Research Council (DP0984755, DP0985084) for their financial support. K.L.W. thanks Jeff Rogers (DARPA) and Betsy Weitzman (FENA). Y.W. thanks the Queensland International Fellowship. F.X. acknowledges helpful discussions with Siguang Ma, Yabin Fan and Pramey Upadhyaya (UCLA) and Wei Peng (UC Riverside).

Author information

Affiliations

Authors

Contributions

F.X. and L.H. designed and fabricated the devices. F.X., L-T.C., M.L. and A.S. carried out the measurements. L-N.C., Y.W., Z.G.C. and J.Z. synthesized the Bi2Te3 nanoribbons and performed structural analysis. Y.W., G.H., X.K., X.J. and Y.Z. contributed to the measurements and analysis. K.W. supervised the research. F.X., Y.W., L.H., J.Z. and K.W. wrote the paper, with help from all other co-authors.

Corresponding authors

Correspondence to Faxian Xiu or Kang L. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10792 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiu, F., He, L., Wang, Y. et al. Manipulating surface states in topological insulator nanoribbons. Nature Nanotech 6, 216–221 (2011). https://doi.org/10.1038/nnano.2011.19

Download citation

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research