Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanotechnological strategies for engineering complex tissues

Abstract

Tissue engineering aims at developing functional substitutes for damaged tissues and organs. Before transplantation, cells are generally seeded on biomaterial scaffolds that recapitulate the extracellular matrix and provide cells with information that is important for tissue development. Here we review the nanocomposite nature of the extracellular matrix, describe the design considerations for different tissues and discuss the impact of nanostructures on the properties of scaffolds and their uses in monitoring the behaviour of engineered tissues. We also examine the different nanodevices used to trigger certain processes for tissue development, and offer our view on the principal challenges and prospects of applying nanotechnology in tissue engineering.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: An example of a tissue engineering concept that involves seeding cells within porous biomaterial scaffolds.
Figure 2: The information provided to cells by the extracellular matrix (ECM).
Figure 3: Recreating ECM components using nanoscale tools.
Figure 4: Nanodevices in tissue engineering.

References

  1. 1

    Langer, R. & Vacanti, J. P. Tissue engineering. Science 260, 920–926 (1993).

    CAS  Google Scholar 

  2. 2

    Freed, L. E. et al. Advanced tools for tissue engineering: Scaffolds, bioreactors, and signaling. Tissue Eng. 12, 3285–3305 (2006).

    CAS  Google Scholar 

  3. 3

    Place, E. S., Evans, N. D. & Stevens, M. M. Complexity in biomaterials for tissue engineering. Nature Mater. 8, 457–470 (2009).

    CAS  Google Scholar 

  4. 4

    Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotech. 23, 47–55 (2005).

    CAS  Google Scholar 

  5. 5

    Tsang, K. Y., Cheung, M. C., Chan, D. & Cheah, K. S. The developmental roles of the extracellular matrix: beyond structure to regulation. Cell Tissue Res. 339, 93–110 (2010).

    CAS  Google Scholar 

  6. 6

    Bauer, A. L., Jackson, T. L. & Jiang, Y. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comp. Biol. 5, e1000445 (2009).

    Google Scholar 

  7. 7

    Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    CAS  Google Scholar 

  8. 8

    Evans, N. D. et al. Substrate stiffness affects early differentiation events in embryonic stem cells. Eur. Cell Mater. 18, 1–13; discussion 13–14 (2009).

    CAS  Google Scholar 

  9. 9

    Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    CAS  Google Scholar 

  10. 10

    Cohen, E. D. et al. Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway. J. Clin. Invest. 119, 2538–2549 (2009).

    CAS  Google Scholar 

  11. 11

    Rozario, T. & DeSimone, D. W. The extracellular matrix in development and morphogenesis: A dynamic view. Dev. Biol. 341, 126–140 (2010).

    CAS  Google Scholar 

  12. 12

    Ott, H. C. et al. Perfusion-decellularized matrix: Using nature's platform to engineer a bioartificial heart. Nature Med. 14, 213–221 (2008).

    CAS  Google Scholar 

  13. 13

    Uygun, B. E. et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Med. 16, 814–820 (2010).

    CAS  Google Scholar 

  14. 14

    Grayson, W. L. et al. Engineering anatomically shaped human bone grafts. Proc. Natl Acad. Sci. USA 107, 3299–3304 (2010).

    CAS  Google Scholar 

  15. 15

    Gui, L., Muto, A., Chan, S. A., Breuer, C. K. & Niklason, L. E. Development of decellularized human umbilical arteries as small-diameter vascular grafts. Tissue Eng. A 15, 2665–2676 (2009).

    CAS  Google Scholar 

  16. 16

    Petersen, T. H. et al. Tissue-engineered lungs for in vivo implantation. Science 329, 538–541.

  17. 17

    Hynes, R. O. The extracellular matrix: Not just pretty fibrils. Science 326, 1216–1219 (2009).

    CAS  Google Scholar 

  18. 18

    Sasisekharan, R., Shriver, Z., Venkataraman, G. & Narayanasami, U. Roles of heparan-sulphate glycosaminoglycans in cancer. Nature Rev. Cancer 2, 521–528 (2002).

    CAS  Google Scholar 

  19. 19

    Lee, S. et al. Preparation of macroporous carbon nanofibres with macroscopic openings in the surfaces and their applications. Nanotechnology 20, 445702 (2009).

    Google Scholar 

  20. 20

    Ayres, C. E., Jha, B. S., Sell, S. A., Bowlin, G. L. & Simpson, D. G. Nanotechnology in the design of soft tissue scaffolds: innovations in structure and function. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 20–34 (2010).

    CAS  Google Scholar 

  21. 21

    Barnes, C. P., Sell, S. A., Boland, E. D., Simpson, D. G. & Bowlin, G. L. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 59, 1413–1433 (2007).

    CAS  Google Scholar 

  22. 22

    Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnol. 21, 1171–1178 (2003).

    CAS  Google Scholar 

  23. 23

    Ma, Z. W., Kotaki, M., Inai, R. & Ramakrishna, S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 11, 101–109 (2005).

    Google Scholar 

  24. 24

    Zeng, J. et al. Poly(vinyl alcohol) nanofibres by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 6, 1484–1488 (2005).

    CAS  Google Scholar 

  25. 25

    Sun, Z. C., Zussman, E., Yarin, A. L., Wendorff, J. H. & Greiner, A. Compound core–shell polymer nanofibres by co-electrospinning. Adv. Mater. 15, 1929–1932 (2003).

    CAS  Google Scholar 

  26. 26

    Ionescu, L. C., Lee, G. C., Sennett, B. J., Burdick, J. A. & Mauck, R. L. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials 31, 4113–4120 (2010).

    CAS  Google Scholar 

  27. 27

    Cao, H. Q., Jiang, X., Chai, C. & Chew, S. Y. RNA interference by nanofiber-based siRNA delivery system. J. Cont. Release 144, 203–212 (2010).

    CAS  Google Scholar 

  28. 28

    Dong, B., Smith, M. E. & Wnek, G. E. Encapsulation of multiple biological compounds within a single electrospun fiber. Small 5, 1508–1512 (2009).

    CAS  Google Scholar 

  29. 29

    Freeman, I. & Cohen, S. The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 30, 2122–2131 (2009).

    CAS  Google Scholar 

  30. 30

    Yilgor, P., Tuzlakoglu, K., Reis, R. L., Hasirci, N. & Hasirci, V. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30, 3551–3559 (2009).

    CAS  Google Scholar 

  31. 31

    Moroni, L., Schotel, R., Hamann, D., de Wijn, J. R. & van Blitterswijk, C. A. 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv. Funct. Mater. 18, 53–60 (2008).

    CAS  Google Scholar 

  32. 32

    Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibres. Science 294, 1684–1688 (2001).

    CAS  Google Scholar 

  33. 33

    Cui, H., Webber, M. J. & Stupp, S. I. Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Biopolymers 94, 1–18 (2010).

    CAS  Google Scholar 

  34. 34

    Gelain, F., Bottai, D., Vescovi, A. & Zhang, S. Designer self-assembling peptide nanofibrescaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 1, e119 (2006).

    Google Scholar 

  35. 35

    Xu, J. et al. Endothelial cells anchoring by functionalized yeast polypeptide. J. Biomed. Mater. Res. A 87, 819–824 (2008).

    Google Scholar 

  36. 36

    Rexeisen, E. L. et al. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibres. Langmuir 26, 1953–1959 (2009).

    Google Scholar 

  37. 37

    Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    CAS  Google Scholar 

  38. 38

    Heino, J. & Kapyla, J. Cellular receptors of extracellular matrix molecules. Curr. Pharm. Des. 15, 1309–1317 (2009).

    CAS  Google Scholar 

  39. 39

    Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).

    CAS  Google Scholar 

  40. 40

    Schofer, M. D. et al. Effect of direct RGD incorporation in PLLA nanofibres on growth and osteogenic differentiation of human mesenchymal stem cells. J. Mater. Sci. Mater. Med. 20, 1535–1540 (2009).

    CAS  Google Scholar 

  41. 41

    Jeon, O., Powell, C., Ahmed, S. M. & Alsberg, E. Biodegradable, photocrosslinked alginate hydrogels with independently tailorable physical properties and cell adhesivity. Tissue Eng. A 16(9): 2915–2925 (2010).

    CAS  Google Scholar 

  42. 42

    Re'em, T., Tsur-Gang, O. & Cohen, S. The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFbeta1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials 31, 6746–6755 (2010).

    CAS  Google Scholar 

  43. 43

    Casper, C. L., Yang, W., Farach-Carson, M. C. & Rabolt, J. F. Coating electrospun collagen and gelatin fibres with perlecan domain I for increased growth factor binding. Biomacromolecules 8, 1116–1123 (2007).

    CAS  Google Scholar 

  44. 44

    Zhou, H. et al. Enhanced bioactivity of bone morphogenetic protein-2 with low dose of 2-N, 6-O-sulfated chitosan in vitro and in vivo. Biomaterials 30, 1715–1724 (2009).

    CAS  Google Scholar 

  45. 45

    Freeman, I., Kedem, A. & Cohen, S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 29, 3260–3268 (2008).

    CAS  Google Scholar 

  46. 46

    Dvir, T. et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc. Natl Acad. Sci. USA 106, 14990–14995 (2009).

    CAS  Google Scholar 

  47. 47

    Bettinger, C. J., Langer, R. & Borenstein, J. T. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem. Int. Ed. 48, 5406–5415 (2009).

    CAS  Google Scholar 

  48. 48

    Teixeira, A. I., Abrams, G. A., Bertics, P. J., Murphy, C. J. & Nealey, P. F. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell. Sci. 116, 1881–1892 (2003). This work is among the first to document that the nanotopographic features encountered in the native basement membrane can profoundly affect cell behaviour.

    CAS  Google Scholar 

  49. 49

    Dalby, M. J. et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Mater. 6, 997–1003 (2007).

    CAS  Google Scholar 

  50. 50

    Kotov, N. A. et al. Nanomaterials for neural interfaces. Adv. Mater. 21, 3970–4004 (2009).

    CAS  Google Scholar 

  51. 51

    Parker, K. K. & Ingber, D. E. Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Phil. Trans. R. Soc. B 362, 1267–1279 (2007).

    CAS  Google Scholar 

  52. 52

    Zimmermann, W. H. et al. Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90, 223–230 (2002).

    CAS  Google Scholar 

  53. 53

    Dvir, T., Levy, O., Shachar, M., Granot, Y. & Cohen, S. Activation of the ERK1/2 cascade via pulsatile interstitial fluid flow promotes cardiac tissue assembly. Tissue Eng. 13, 2185–2193 (2007).

    CAS  Google Scholar 

  54. 54

    Radisic, M. et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl Acad. Sci. USA 101, 18129–18134 (2004).

    CAS  Google Scholar 

  55. 55

    McDevitt, T. C., Woodhouse, K. A., Hauschka, S. D., Murry, C. E. & Stayton, P. S. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J. Biomed. Mater. Res. A 66, 586–595 (2003).

    Google Scholar 

  56. 56

    Kim, D. H. et al. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Natl Acad. Sci. USA 107, 565–570 (2010).

    CAS  Google Scholar 

  57. 57

    Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nature Rev. Mol. Cell Biol. 9, 887–901 (2008).

    CAS  Google Scholar 

  58. 58

    Bettinger, C. J., Kulig, K. M., Vacanti, J. P., Langer, R. & Borenstein, J. T. Nanofabricated collagen-inspired synthetic elastomers for primary rat hepatocyte culture. Tissue Eng. A 15, 1321–1329 (2009).

    CAS  Google Scholar 

  59. 59

    Feng, Z. Q. et al. The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials 30, 2753–2763 (2009).

    CAS  Google Scholar 

  60. 60

    Chan, C. K. et al. Biomimetic nanocomposites for bone graft applications. Nanomedicine (Lond.) 1, 177–188 (2006).

    CAS  Google Scholar 

  61. 61

    Sachlos, E., Gotora, D. & Czernuszka, J. T. Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng. 12, 2479–2487 (2006).

    CAS  Google Scholar 

  62. 62

    Zhang, Y. et al. Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan. Tissue Eng. A 16, 1949–1960 (2010).

    CAS  Google Scholar 

  63. 63

    Bhattacharyya, S. et al. Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibres: scaffolds for bone tissue engineering. J. Biomed. Nanotechnol. 5, 69–75 (2009).

    CAS  Google Scholar 

  64. 64

    Zhang, L. et al. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes. Nanotechnology 20, 175101 (2009).

    Google Scholar 

  65. 65

    Roohani-Esfahani, S. I., Nouri-Khorasani, S., Lu, Z., Appleyard, R. & Zreiqat, H. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites. Biomaterials 31, 5498–5509 (2010).

    CAS  Google Scholar 

  66. 66

    Suhr, J. et al. Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nature Nanotech. 2, 417–421 (2007).

    CAS  Google Scholar 

  67. 67

    Wang, S. F., Shen, L., Zhang, W. D. & Tong, Y. J. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6, 3067–3072 (2005).

    CAS  Google Scholar 

  68. 68

    Mattson, M. P., Haddon, R. C. & Rao, A. M. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J. Mol. Neuro. 14, 175–182 (2000).

    CAS  Google Scholar 

  69. 69

    Hu, H., Ni, Y. C., Montana, V., Haddon, R. C. & Parpura, V. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett. 4, 507–511 (2004).

    CAS  Google Scholar 

  70. 70

    Lovat, V. et al. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett. 5, 1107–1110 (2005).

    CAS  Google Scholar 

  71. 71

    Massobrio, G., Massobrio, P. & Martinoia, S. Modeling the neuron–carbon nanotube–ISFET junction to investigate the electrophysiological neuronal activity. Nano Lett. 8, 4433–4440 (2008).

    CAS  Google Scholar 

  72. 72

    Mazzatenta, A. et al. Interfacing neurons with carbon nanotubes: Electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci. 27, 6931–6936 (2007).

    CAS  Google Scholar 

  73. 73

    Cellot, G. et al. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nature Nanotech. 4, 126–133 (2009). The authors suggest a mechanism for how carbon nanotubes affect the collective electrical activity of neuronal networks in vitro.

    CAS  Google Scholar 

  74. 74

    Gui, X. et al. Soft, highly conductive nanotube sponges and composites with controlled compressibility. ACS Nano 4, 2320–2326 (2010).

    CAS  Google Scholar 

  75. 75

    Bianco, A. et al. Microstructure and cytocompatibility of electrospun nanocomposites based on poly(epsilon-caprolactone) and carbon nanostructures. Int. J. Artif. Organs 33, 271–282 (2010).

    CAS  Google Scholar 

  76. 76

    Heo, S. J. et al. In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process. Tissue Eng. A 15, 977–989 (2009).

    CAS  Google Scholar 

  77. 77

    Pek, Y. S., Gao, S., Arshad, M. S., Leck, K. J. & Ying, J. Y. Porous collagen–apatite nanocomposite foams as bone regeneration scaffolds. Biomaterials 29, 4300–4305 (2008).

    CAS  Google Scholar 

  78. 78

    Wu, S. L. et al. A biomimetic hierarchical scaffold: natural growth of nanotitanates on three-dimensional microporous Ti-based metals. Nano Lett. 8, 3803–3808 (2008).

    CAS  Google Scholar 

  79. 79

    Zhang, S. F. & Uludag, H. Nanoparticulate systems for growth factor delivery. Pharm. Res. 26, 1561–1580 (2009).

    CAS  Google Scholar 

  80. 80

    Fan, D. et al. Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nature Nanotech. 5, 545–551 (2010).

    CAS  Google Scholar 

  81. 81

    Alsberg, E., Feinstein, E., Joy, M. P., Prentiss, M. & Ingber, D. E. Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering. Tissue Eng. 12, 3247–3256 (2006).

    CAS  Google Scholar 

  82. 82

    Ito, A., Ino, K., Kobayashi, T. & Honda, H. The effect of RGD peptide-conjugated magnetite cationic liposomes on cell growth and cell sheet harvesting. Biomaterials 26, 6185–6193 (2005).

    CAS  Google Scholar 

  83. 83

    Ito, A. et al. Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng. 11, 1553–1561 (2005).

    CAS  Google Scholar 

  84. 84

    Pislaru, S. V. et al. Magnetic forces enable rapid endothelialization of synthetic vascular grafts. Circulation 114, I314–I318 (2006).

    Google Scholar 

  85. 85

    Souza, G. R. et al. Three-dimensional tissue culture based on magnetic cell levitation. Nature Nanotech. 5, 291–296 (2010). The authors show a culture system in which the geometry and cell mass can be manipulated by spatially controlling the magnetic field.

    CAS  Google Scholar 

  86. 86

    Keefer, E. W., Botterman, B. R., Romero, M. I., Rossi, A. F. & Gross, G. W. Carbon nanotube coating improves neuronal recordings. Nature Nanotech. 3, 434–439 (2008).

    CAS  Google Scholar 

  87. 87

    Zhou, X. J., Moran-Mirabal, J. M., Craighead, H. G. & McEuen, P. L. Supported lipid bilayer/carbon nanotube hybrids. Nature Nanotech. 2, 185–190 (2007).

    CAS  Google Scholar 

  88. 88

    Pappas, T. C. et al. Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons. Nano Lett. 7, 513–519 (2007).

    CAS  Google Scholar 

  89. 89

    Timko, B. P., Cohen-Karni, T., Qing, Q., Tian, B. Z. & Lieber, C. M. Design and implementation of functional nanoelectronic interfaces with biomolecules, cells, and tissue using nanowire device arrays. IEEE Trans. Nanotechnol. 9, 269–280 (2010).

    Google Scholar 

  90. 90

    Patolsky, F. et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 1100–1104 (2006).

    CAS  Google Scholar 

  91. 91

    Eschermann, J. F. et al. Action potentials of HL-1 cells recorded with silicon nanowire transistors. Appl. Phys. Lett. 95, 083703 (2009).

    Google Scholar 

  92. 92

    Cohen-Karni, T., Timko, B. P., Weiss, L. E. & Lieber, C. M. Flexible electrical recording from cells using nanowire transistor arrays. Proc. Natl Acad. Sci. USA 106, 7309–7313 (2009).

    CAS  Google Scholar 

  93. 93

    Cohen-Karni, T., Qing, Q., Li, Q., Fang, Y. & Lieber, C. M. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 10, 1098–1102 (2010).

    CAS  Google Scholar 

  94. 94

    Timko, B. P. et al. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 9, 914–918 (2009).

    CAS  Google Scholar 

  95. 95

    Qing, Q. et al. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl Acad. Sci. USA 107, 1882–1887 (2010).

    CAS  Google Scholar 

  96. 96

    Kim, D-H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Mater. 9, 511–517 (2010).

    CAS  Google Scholar 

  97. 97

    Bettinger, C. J. & Bao, Z. A. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 22, 651–655 (2010).

    CAS  Google Scholar 

  98. 98

    Tian, B. Z., Xie, P., Kempa, T. J., Bell, D. C. & Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nature Nanotech. 4, 824–829 (2009).

    CAS  Google Scholar 

  99. 99

    Tian, B. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010). This article describes a nanoscale field-effect transistor cell probe that is capable of observing and monitoring the intracellular signals of living electrogenic cells.

    CAS  Google Scholar 

  100. 100

    Lim, D. K., Jeon, K. S., Kim, H. M., Nam, J. M. & Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature Mater. 9, 60–67 (2010).

    CAS  Google Scholar 

  101. 101

    Heller, D. A. et al. Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nature Nanotech. 4, 114–120 (2009).

    CAS  Google Scholar 

  102. 102

    Barone, P. W. et al. Modulation of single-walled carbon nanotube photoluminescence by hydrogel swelling. ACS Nano 3, 3869–3877 (2009).

    CAS  Google Scholar 

  103. 103

    Farokhzad, O. C. & Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20 (2009).

    CAS  Google Scholar 

  104. 104

    Riehemann, K. et al. Nanomedicine—challenge and perspectives. Angew. Chem. Int. Ed. 48, 872–897 (2009).

    CAS  Google Scholar 

  105. 105

    Kunzmann, A. et al. Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochim. Biophys. Acta. 10.1016/j.bbagen.2010.04.007 (2010). This article describes the interaction between engineered nanomaterials and biological systems and may help in designing safer and more compatible nanomaterials for future applications in medicine.

  106. 106

    Zaveri, T. D. et al. Contributions of surface topography and cytotoxicity to the macrophage response to zinc oxide nanorods. Biomaterials 31, 2999–3007 (2010).

    CAS  Google Scholar 

  107. 107

    Mallouk, T. E. & Sen, A. Powering nanorobots. Sci. Am. 300, 72–77 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grants DE13023, DE016516, EB006365 and R01GM073626, and NSF grant BES-0609182. T.D. acknowledges a Postdoctoral Fellowship from the American Heart Association. B.P.T. acknowledges a Ruth L. Kirschstein National Research Service Award from the NIH National Institute of General Medical Sciences. We thank S. Cohen, S. McAllister and B. Tian for their comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert Langer.

Ethics declarations

Competing interests

R.L. has a financial interest in Pervasis and Fibrocell Science, Inc.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dvir, T., Timko, B., Kohane, D. et al. Nanotechnological strategies for engineering complex tissues. Nature Nanotech 6, 13–22 (2011). https://doi.org/10.1038/nnano.2010.246

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research