Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Site-specific fluorescence reveals distinct structural changes with GABA receptor activation and antagonism

Abstract

Neurotransmitter-operated ion channels, such as the GABA (γ-aminobutyric acid) receptor, are important in fast synaptic transmission between neurons. Using site-specific fluorescent labeling and simultaneous electrophysiological analysis in Xenopus laevis oocytes expressing recombinant ρ1 GABA receptors, we identified agonist-mediated molecular rearrangements at three positions within and near the agonist-binding pocket that were highly correlated with receptor activation. We also show that competitive antagonists induced distinct rearrangements on their own that stabilized the receptor in a closed state. Finally, the allosteric antagonist picrotoxin induced a global conformational change that was sensed in the subunit–subunit interface of the amino (N)-terminal domain, distant from its presumed site of action within the transmembrane domains. This first detection in real time of molecular rearrangements of a ligand-activated receptor provides insights into the structural correlates of activation, antagonism and allosteric modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of cysteine mutants, magnitude of oocyte labeling by fluorophore, and the recording apparatus.
Figure 2: Simultaneously recorded GABA-induced ΔF and current were closely correlated.
Figure 3: Changes in fluorescence in response to the competitive antagonist 3-APMPA.
Figure 4: Actions of the agonist TACA and competitive antagonist 3-APA.
Figure 5: Actions of the antagonist picrotoxin on GABA-mediated ΔF and I.

Similar content being viewed by others

References

  1. Mannuzzu, L.M., Moronne, M.M. & Isacoff, E.Y. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271, 213–216 (1996).

    Article  CAS  Google Scholar 

  2. Cha, A. & Bezanilla, F. Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron 19, 1127–1140 (1997).

    Article  CAS  Google Scholar 

  3. Li, M., Farley, R.A. & Lester, H.A. An intermediate state of the γ-aminobutyric acid transporter GAT1 revealed by simultaneous voltage clamp and fluorescence. J. Gen. Physiol. 115, 491–508 (2000).

    Article  CAS  Google Scholar 

  4. Noda, M. et al. Primary structure of α subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299, 793–797 (1982).

    Article  CAS  Google Scholar 

  5. Maricq, A.V., Peterson, A.S., Brake, A.J., Myers, R.M. & Julius, D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254, 432–436 (1991).

    Article  CAS  Google Scholar 

  6. Grenningloh, G. et al. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328, 215–220 (1987).

    Article  CAS  Google Scholar 

  7. Schofield, P.R. et al. Sequence and functional expression of the GABA-A receptor shows a ligand-gated receptor superfamily. Nature 328, 221–227 (1987).

    Article  CAS  Google Scholar 

  8. Changeux, J.-P. & Edelstein, S.J. Allosteric receptors after 30 years. Neuron 21, 959–980 (1998).

    Article  CAS  Google Scholar 

  9. Smith, G.B. & Olsen, R.W. Functional domains of GABAA receptors. Trends Pharmacol. Sci. 16, 162–168 (1995).

    Article  CAS  Google Scholar 

  10. Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276 (2001).

    Article  CAS  Google Scholar 

  11. Amin, J. & Weiss, D.S. Homomeric ρ1 GABA channels: activation properties and domains. Receptors Channels 2, 227–236 (1994).

    CAS  PubMed  Google Scholar 

  12. Sigel, E., Baur, R., Kellenberger, S. & Malherbe, P. Point mutations affecting antagonist affinity and agonist dependent gating of GABAA receptor channels. EMBO J. 11, 2017–2023 (1992).

    Article  CAS  Google Scholar 

  13. Vandenberg, R.J., Handford, C.A. & Schofield, P.R. Distinct agonist- and antagonist-binding sites on the glycine receptor. Neuron 9, 491–496 (1992).

    Article  CAS  Google Scholar 

  14. Czajkowski, C., Kaufmann, C. & Karlin, A. Negatively charged amino acid residues in the nicotinic receptor Δ subunit that contribute to the binding of acetylcholine. Proc. Natl. Acad. Sci. USA 90, 6285–6289 (1993).

    Article  CAS  Google Scholar 

  15. Kao, P.N. & Karlin, A. Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J. Biol. Chem. 261, 8085–8088 (1986).

    CAS  PubMed  Google Scholar 

  16. Dennis, M. et al. Amino acids of the Torpedo marmorata acetylcholine receptor α subunit labeled by a photoaffinity ligand for the acetylcholine binding site. Biochemistry 27, 2346–2357 (1988).

    Article  CAS  Google Scholar 

  17. Middleton, R.E. & Cohen, J.B. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]nicotine as an agonist photoaffinity label. Biochemistry 30, 6987–6997 (1991).

    Article  CAS  Google Scholar 

  18. Fu, D.X. & Sine, S.M. Competitive antagonists bridge the α-γ subunit interface of the acetylcholine receptor through quaternary ammonium-aromatic interactions. J. Biol. Chem. 269, 26152–26157 (1994).

    CAS  PubMed  Google Scholar 

  19. Galzi, J.L. et al. Identification of a novel amino acid α-tyrosine 93 within the cholinergic ligands-binding sites of the acetylcholine receptor by photoaffinity labeling. Additional evidence for a three-loop model of the cholinergic ligands-binding sites. J. Biol. Chem. 265, 10430–10437 (1990).

    CAS  PubMed  Google Scholar 

  20. Boileau, A.J., Evers, A.R., Davis, A.F. & Czajkowski, C. Mapping the agonist binding site of the GABAA receptor: evidence for α β strand. J. Neurosci. 19, 4847–4854 (1999).

    Article  CAS  Google Scholar 

  21. Teissere, J.A. & Czajkowski, C. A β-strand in the γ2 subunit lines the benzodiazepine binding site of the GABAA receptor: structural rearrangements detected during channel gating. J. Neurosci. 21, 4977–4986 (2001).

    Article  CAS  Google Scholar 

  22. Cromer, B.A., Morton, C.J. & Parker, M.W. Anxiety over GABAA receptor structure relieved by AChBP. Trends Biochem. Sci. 27, 280–287 (2002).

    Article  CAS  Google Scholar 

  23. Kao, P.N. et al. Identification of the α subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J. Biol. Chem. 259, 1662–1665 (1984).

    Google Scholar 

  24. Prince, R.J. & Sine, S.M. Molecular dissection of subunit interfaces in the acetylcholine receptor. Identification of residues that determine agonist selectivity. J. Biol. Chem. 271, 25770–25777 (1996).

    Article  CAS  Google Scholar 

  25. Sine, S.M., Kreienkamp, H., Bren, N., Maeda, R. & Taylor, P. Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of determinates of α-conotoxin M1 selectivity. Neuron 15, 205–211 (1995).

    Article  CAS  Google Scholar 

  26. Corringer, P.-J., Le Novère, N. & Changeux, J.P. Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40, 431–458 (2000).

    Article  CAS  Google Scholar 

  27. Ragozzino, D. et al. Design and in vitro pharmacology of a selective γ-aminobutyric acid C receptor antagonist. Mol. Pharmacol. 50, 1024–1030 (1996).

    CAS  PubMed  Google Scholar 

  28. Chang, Y. & Weiss, D.S. Substitutions of the highly conserved M2 leucine create spontaneously opening ρ1 γ-aminobutyric acid receptors. Mol. Pharmacol. 53, 511–523 (1998).

    Article  CAS  Google Scholar 

  29. Olsen, R.W. Drug interactions at the GABA receptor-ionophore complex. Annu. Rev. Pharmacol. Toxicol. 22, 245–277 (1982).

    Article  CAS  Google Scholar 

  30. Pribilla, I., Takagi, T., Langosch, D., Bormann, J. & Betz, H. The atypical M2 segment of the β subunit confers picrotoxin resistance to inhibitory glycine receptor channels. EMBO J. 11, 4305–4311 (1992).

    Article  CAS  Google Scholar 

  31. Xu, M., Covey, D.F. & Akabas, M.H. Interaction of picrotoxin with GABAA receptor channel-lining residues probed in cysteine mutants. Biophys. J. 69, 1858–1867 (1995).

    Article  CAS  Google Scholar 

  32. Newland, C. & Cull-Candy, S. On the mechanism of action of picrotoxin on GABA receptor channels in dissociated sympathetic neurones of the rat. J. Physiol. 447, 191–213 (1992).

    Article  CAS  Google Scholar 

  33. Yoon, K., Covey, D. & Rothman, S. Multiple mechanisms of picrotoxin block of GABA-induced currents in rat hippocampal neurons. J. Physiol. (Lond.) 464, 423–439 (1993).

    Article  CAS  Google Scholar 

  34. Amin, J. & Weiss, D.S. Insights into the activation of ρ1 GABA receptors obtained by coexpression of wild type and activation-impaired subunits. Proc. R. Soc. Lond. B Biol. Sci. 263, 273–282 (1996).

    Article  CAS  Google Scholar 

  35. Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 (1995).

    Article  CAS  Google Scholar 

  36. Grosman, C., Zhou, M. & Auerbach, A. Mapping the conformational wave of acetylcholine receptor gating. Nature 403, 773–776 (2000).

    Article  CAS  Google Scholar 

  37. Armstrong, N. & Gouaux, E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28, 165–181 (2000).

    Article  CAS  Google Scholar 

  38. Sorensen, J.B., Cha, A., Latorre, R., Rosenman, E. & Bezanilla, F. Deletion of the S3-S4 linker in the Shaker potassium channel reveals two quenching groups near the outside of S4. J. Gen. Physiol. 115, 209–221 (2000).

    Article  CAS  Google Scholar 

  39. Gandhi, C.S., Loots, E. & Isacoff, E. Reconstructing voltage sensor-pore interaction from a fluorescence scan of a voltage-gated K+ channel. Neuron 27, 585–595 (2000).

    Article  CAS  Google Scholar 

  40. Liman, E.R., Tytgat, J. & Hess, P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9, 861–871 (1992).

    Article  CAS  Google Scholar 

  41. Chang, Y., Wang, R., Barot, S. & Weiss, D.S. Stoichiometry of a recombinant GABAA receptor. J. Neurosci. 16, 5415–5424 (1996).

    Article  CAS  Google Scholar 

  42. Calvo, D.J. & Miledi, R. Activation of GABA ρ1 receptors by glycine and β-alanine. NeuroReport 6, 1118–1120 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge R. Llinas, who encouraged us to undertake these studies. We also thank P. Richardson, A. Klon and S. Harvey for assistance with Fig. 1a; C. Garner, R.A.J. Lester, M. Quick and S. Silberberg for comments on the manuscript; J. Claude for carrying out the measurements of the emission spectra and quantum yield of AF546 and E. Isacoff for providing advice on the fluorescence detection apparatus. The work was supported by NINDS 35291 and 36195 (D.W.) and NIDDK 07545 (Y.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Weiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Y., Weiss, D. Site-specific fluorescence reveals distinct structural changes with GABA receptor activation and antagonism. Nat Neurosci 5, 1163–1168 (2002). https://doi.org/10.1038/nn926

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn926

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing