Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How advances in neural recording affect data analysis

Abstract

Over the last five decades, progress in neural recording techniques has allowed the number of simultaneously recorded neurons to double approximately every 7 years, mimicking Moore's law. Such exponential growth motivates us to ask how data analysis techniques are affected by progressively larger numbers of recorded neurons. Traditionally, neurons are analyzed independently on the basis of their tuning to stimuli or movement. Although tuning curve approaches are unaffected by growing numbers of simultaneously recorded neurons, newly developed techniques that analyze interactions between neurons become more accurate and more complex as the number of recorded neurons increases. Emerging data analysis techniques should consider both the computational costs and the potential for more accurate models associated with this exponential growth of the number of recorded neurons.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Exponential growth in the number of recorded neurons.
Figure 2: Approaches to neural data analysis and the scaling of spike prediction accuracy.

References

  1. Moore, G.E. Cramming more components onto integrated circuits. Electronics 38 (1965).

  2. Papadimitriou, C.H. Computational Complexity (John Wiley and Sons, 2003).

  3. Nicolelis, M. Methods for Neural Ensemble Recordings 2nd edn (CRC Press, 2007).

  4. Nicolelis, M. et al. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. USA 100, 11041–11046 (2003).

    CAS  Article  Google Scholar 

  5. Kelly, R. et al. Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. J. Neurosci. 27, 261–264 (2007).

    CAS  Article  Google Scholar 

  6. Moore, G. in Understanding Moore's Law: Four Decades of Innovation (ed. Brock, D.C.) Ch. 7 (Chemical Heritage Foundation, 2006).

  7. Harris, K., Henze, D., Csicsvari, J., Hirase, H. & Buzsaki, G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84, 401–414 (2000).

    CAS  Article  Google Scholar 

  8. Lewicki, M. A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9, R53–R78 (1998).

    CAS  Article  Google Scholar 

  9. Brown, E.N., Kass, R.E. & Mitra, P.P. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7, 456–461 (2004).

    CAS  Article  Google Scholar 

  10. Kass, R., Ventura, V. & Brown, E. Statistical issues in the analysis of neuronal data. J. Neurophysiol. 94, 8–25 (2005).

    Article  Google Scholar 

  11. Paninski, L. et al. A new look at state-space models for neural data. J. Comput. Neurosci. 29, 1–20 (2009).

    Article  Google Scholar 

  12. Paninski, L., Pillow, J. & Lewi, J. Statistical models for neural encoding, decoding, and optimal stimulus design. Prog. Brain Res. 165, 493–507 (2007).

    Article  Google Scholar 

  13. Brockwell, A., Rojas, A. & Kass, R. Recursive Bayesian decoding of motor cortical signals by particle filtering. J. Neurophysiol. 91, 1899–1907 (2004).

    CAS  Article  Google Scholar 

  14. Okatan, M., Wilson, M.A. & Brown, E.N. Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Comput. 17, 1927–1961 (2005).

    Article  Google Scholar 

  15. Pillow, J.W. et al. Spatio-temporal correlations and visual signaling in a complete neuronal population. Nature 454, 995–999 (2008).

    CAS  Article  Google Scholar 

  16. Stevenson, I.H., Rebesco, J.M., Miller, L.E. & Körding, K.P. Inferring functional connections between neurons. Curr. Opin. Neurobiol. 18, 582–588 (2008).

    CAS  Article  Google Scholar 

  17. Truccolo, W., Eden, U.T., Fellows, M.R., Donoghue, J.P. & Brown, E.N. A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. J. Neurophysiol. 93, 1074–1089 (2005).

    Article  Google Scholar 

  18. Schneidman, E., Berry, M.J. II, Segev, R. & Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006).

    CAS  Article  Google Scholar 

  19. Maynard, E. et al. Neuronal interactions improve cortical population coding of movement direction. J. Neurosci. 19, 8083–8093 (1999).

    CAS  Article  Google Scholar 

  20. Harris, K., Csicsvari, J., Hirase, H., Dragoi, G. & Buzsáki, G. Organization of cell assemblies in the hippocampus. Nature 424, 552–556 (2003).

    CAS  Article  Google Scholar 

  21. Paninski, L. Maximum likelihood estimation of cascade point-process neural encoding models. Network 15, 243–262 (2004).

    Article  Google Scholar 

  22. Hatsopoulos, N., Joshi, J. & O'Leary, J.G. Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J. Neurophysiol. 92, 1165–1174 (2004).

    Article  Google Scholar 

  23. Smith, M. & Kohn, A. Spatial and temporal scales of neuronal correlation in primary visual cortex. J. Neurosci. 28, 12591–12603 (2008).

    CAS  Article  Google Scholar 

  24. Stevenson, I.H. et al. Bayesian inference of functional connectivity and network structure from spikes. IEEE Trans. Neural Syst. Rehabil. Eng. 17, 203–213 (2009).

    Article  Google Scholar 

  25. Truccolo, W., Hochberg, L. & Donoghue, J. Collective dynamics in human and monkey sensorimotor cortex: predicting single neuron spikes. Nat. Neurosci. 13, 105–111 (2009).

    Article  Google Scholar 

  26. Babadi, B., Casti, A., Xiao, Y., Kaplan, E. & Paninski, L. A generalized linear model of the impact of direct and indirect inputs to the lateral geniculate nucleus. J. Vis. 10, 22 (2010).

    Article  Google Scholar 

  27. Kelly, R., Smith, M., Kass, R. & Lee, T. Local field potentials indicate network state and account for neuronal response variability. J. Comput. Neurosci. 29, 567–579 (2010).

    Article  Google Scholar 

  28. Rebesco, J.M., Stevenson, I.H., Koerding, K., Solla, S.A. & Miller, L.E. Rewiring neural interactions by micro-stimulation. Front. Syst. Neurosci. 4, 39 (2010).

    Article  Google Scholar 

  29. Yu, B. et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102, 614–635 (2009).

    Article  Google Scholar 

  30. Churchland, M., Yu, B., Sahani, M. & Shenoy, K. Techniques for extracting single-trial activity patterns from large-scale neural recordings. Curr. Opin. Neurobiol. 17, 609–618 (2007).

    CAS  Article  Google Scholar 

  31. Churchland, M. et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).

    CAS  Article  Google Scholar 

  32. Vogelstein, J. et al. Spike inference from calcium imaging using sequential monte carlo methods. Biophys. J. 97, 636–655 (2009).

    CAS  Article  Google Scholar 

  33. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    CAS  Article  Google Scholar 

  34. Shlens, J. et al. The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 26, 8254–8266 (2006).

    CAS  Article  Google Scholar 

  35. Ecker, A. et al. Decorrelated neuronal firing in cortical microcircuits. Science 327, 584–587 (2010).

    CAS  Article  Google Scholar 

  36. Vogels, T., Rajan, K. & Abbott, L. Neural network dynamics. Annu. Rev. Neurosci. 28, 357–376 (2005).

    CAS  Article  Google Scholar 

  37. Brette, R. et al. Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23, 349–398 (2007).

    Article  Google Scholar 

  38. Averbeck, B., Latham, P. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).

    CAS  Article  Google Scholar 

  39. Pouget, A., Dayan, P. & Zemel, R. Information processing with population codes. Nat. Rev. Neurosci. 1, 125–132 (2000).

    CAS  Article  Google Scholar 

  40. Barna, J., Arezzo, J. & Vaughan, H. Jr. A new multielectrode array for the simultaneous recording of field potentials and unit activity. Electroencephalogr. Clin. Neurophysiol. 52, 494–496 (1981).

    CAS  Article  Google Scholar 

  41. Krüger, J. & Bach, M. Simultaneous recording with 30 microelectrodes in monkey visual cortex. Exp. Brain Res. 41, 191–194 (1981).

    Article  Google Scholar 

  42. Rousche, P. & Normann, R. Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah Intracortical Electrode Array. IEEE Trans. Rehabil. Eng. 7, 56–68 (2002).

    Article  Google Scholar 

  43. Blanche, T., Spacek, M., Hetke, J. & Swindale, N. Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording. J. Neurophysiol. 93, 2987–3000 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to A. Kohn and members of the Kohn laboratory for providing data from visual cortex (US National Institutes of Health EY016774) and N. Hatsopoulos and J. Reimer for providing data from motor cortex. All animal use procedures were approved by the institutional animal care and use committees at Albert Einstein College of Medicine and the University of Chicago, respectively. Thanks to B. Yu and J. Cunningham for providing the GPFA code and B. Yu for insightful discussions. This work was supported by the Chicago Community Trust and US National Institutes of Health grants 1R01NS063399 and 2P01NS044393.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian H Stevenson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Methods (PDF 279 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stevenson, I., Kording, K. How advances in neural recording affect data analysis. Nat Neurosci 14, 139–142 (2011). https://doi.org/10.1038/nn.2731

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2731

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing