Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors

Abstract

In tumors that retain wild-type p53, its tumor-suppressor function is often impaired as a result of the deregulation of HDM-2, which binds to p53 and targets it for proteasomal degradation. We have screened a chemical library and identified a small molecule named RITA (reactivation of p53 and induction of tumor cell apoptosis), which bound to p53 and induced its accumulation in tumor cells. RITA prevented p53–HDM-2 interaction in vitro and in vivo and affected p53 interaction with several negative regulators. RITA induced expression of p53 target genes and massive apoptosis in various tumor cells lines expressing wild-type p53. RITA suppressed the growth of human fibroblasts and lymphoblasts only upon oncogene expression and showed substantial p53-dependent antitumor effect in vivo. RITA may serve as a lead compound for the development of an anticancer drug that targets tumors with wild-type p53.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: RITA suppressed the growth of tumor cells in a wild-type p53-dependent manner.
Figure 2: RITA bound the N terminus of p53 and induced the accumulation of p53 in an oncogene-dependent manner.
Figure 3: RITA blocked the interaction between p53 and HDM-2 and prevented p53 ubiquitination in vitro and in cells.
Figure 4: Restoration of transcriptional transactivation function of p53 by RITA.
Figure 5: RITA induced p53-dependent apoptosis.
Figure 6: Antitumor activity of RITA.

References

  1. Vogelstein, B., Lane, D. & Levine, A.J. Surfing the p53 network. Nature 408, 307–310 (2000).

    CAS  Article  Google Scholar 

  2. Olivier, M. et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 19, 607–614 (2002).

    CAS  Article  Google Scholar 

  3. Chene, P. Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. Nat. Rev. Cancer 3, 102–109 (2003).

    CAS  Article  Google Scholar 

  4. Prives, C. Signaling to p53: breaking the MDM2-p53 circuit. Cell 95, 5–8 (1998).

    CAS  Article  Google Scholar 

  5. Montes de Oca Luna, R., Wagner, D.S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995).

    CAS  Article  Google Scholar 

  6. Vousden, K.H. Activation of the p53 tumor suppressor protein. Biochim. Biophys. Acta 1602, 47–59.(2002).

    CAS  PubMed  Google Scholar 

  7. Evan, G. & Littlewood, T. A matter of life and cell death. Science 281, 1317–1322 (1998).

    CAS  Article  Google Scholar 

  8. Bottger, A. et al. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr. Biol. 7, 860–869 (1997).

    CAS  Article  Google Scholar 

  9. Chene, P. et al. A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J. Mol. Biol. 299, 245–253 (2000).

    CAS  Article  Google Scholar 

  10. Midgley, C.A. et al. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene 19, 2312–2323 (2000).

    CAS  Article  Google Scholar 

  11. Lai, Z. et al. Differentiation of Hdm2-mediated p53 ubiquitination and Hdm2 autoubiquitination activity by small molecular weight inhibitors. Proc. Natl. Acad. Sci. USA 99, 14734–14739 (2002).

    CAS  Article  Google Scholar 

  12. Zhao, J. et al. The initial evaluation of non-peptidic small-molecule HDM2 inhibitors based on p53–HDM2 complex structure. Cancer Lett. 183, 69–77 (2002).

    CAS  Article  Google Scholar 

  13. Vassilev, L.T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    CAS  Article  Google Scholar 

  14. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).

    CAS  Article  Google Scholar 

  15. Bunz, F. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. 104, 263–269 (1999).

    CAS  Article  Google Scholar 

  16. Rigler, R. et al. Specific binding of proinsulin C-peptide to human cell membranes. Proc. Natl. Acad. Sci. USA 96, 13318–13323 (1999).

    CAS  Article  Google Scholar 

  17. Yakovleva, T. et al. p53 Latency. C-terminal domain prevents binding of p53 core to target but not to nonspecific DNA sequences. J. Biol. Chem. 276, 15650–15658 (2001).

    CAS  Article  Google Scholar 

  18. Wang, L., Grossman, S.R. & Kieff, E. Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc. Natl. Acad. Sci. USA 97, 430–435 (2000).

    CAS  Article  Google Scholar 

  19. Lin, J., Chen, J., Elenbaas, B. & Levine, A.J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kDa protein. Genes Dev. 8, 1235–1246 (1994).

    CAS  Article  Google Scholar 

  20. Kussie, P.H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953. (1996).

    CAS  Article  Google Scholar 

  21. Burch, L.R., Midgley, C.A., Currie, R.A., Lane, D.P. & Hupp, T.R. Mdm2 binding to a conformationally sensitive domain on p53 can be modulated by RNA. FEBS Lett. 472, 93–98 (2000).

    CAS  Article  Google Scholar 

  22. Kanovsky, M. et al. Peptides from the amino terminal mdm-2-binding domain of p53, designed from conformational analysis, are selectively cytotoxic to transformed cells. Proc. Natl. Acad. Sci. USA 98, 12438–12443 (2001).

    CAS  Article  Google Scholar 

  23. Gu, W. & Roeder, R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    CAS  Article  Google Scholar 

  24. Grossman, S.R. et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300, 342–344 (2003).

    CAS  Article  Google Scholar 

  25. Bergamaschi, D. et al. iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat. Genet. 33, 162–167 (2003).

    CAS  Article  Google Scholar 

  26. Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590 (2003).

    CAS  Article  Google Scholar 

  27. Nikolaev, A.Y., Li, M., Puskas, N., Qin, J. & Gu, W. Parc: a cytoplasmic anchor for p53. Cell 112, 29–40 (2003).

    CAS  Article  Google Scholar 

  28. Pandhare, J., Dash, C., Rao, M. & Deshpande, V. Slow tight binding inhibition of proteinase K by a proteinaceous inhibitor: conformational alterations responsible for conferring irreversibility to the enzyme-inhibitor complex. J. Biol. Chem. 278, 48735–48744 (2003).

    CAS  Article  Google Scholar 

  29. Jabbur, J.R. et al. Mdm-2 binding and TAF(II)31 recruitment is regulated by hydrogen bond disruption between the p53 residues Thr18 and Asp21. Oncogene 21, 7100–7113 (2002).

    CAS  Article  Google Scholar 

  30. Iyer, N.G. et al. p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. Proc. Natl. Acad. Sci. USA 101, 7386–7391 (2004).

    CAS  Article  Google Scholar 

  31. Grossman, S.R. et al. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol. Cell 2, 405–415 (1998).

    CAS  Article  Google Scholar 

  32. Liu, W.L., Midgley, C., Stephen, C., Saville, M. & Lane, D.P. Biological significance of a small highly conserved region in the N terminus of the p53 tumour suppressor protein. J. Mol. Biol. 313, 711–731 (2001).

    CAS  Article  Google Scholar 

  33. Friedlander, P., Legros, Y., Soussi, T. & Prives, C. Regulation of mutant p53 temperature-sensitive DNA binding. J. Biol. Chem. 271, 25468–25478 (1996).

    CAS  Article  Google Scholar 

  34. Hansen, S., Hupp, T.R. & Lane, D.P. Allosteric regulation of the thermostability and DNA binding activity of human p53 by specific interacting proteins. CRC Cell Transformation Group. J. Biol. Chem. 271, 3917–3924 (1996).

    CAS  Article  Google Scholar 

  35. Cho, Y., Gorina, S., Jeffrey, P.D. & Pavletich, N.P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    CAS  Article  Google Scholar 

  36. Jeffrey, P.D., Gorina, S. & Pavletich, N.P. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267, 1498–14502 (1995).

    CAS  Article  Google Scholar 

  37. Lee, W. et al. Solution structure of the tetrameric minimum transforming domain of p53. Nat. Struct. Biol. 1, 877–890 (1994).

    CAS  Article  Google Scholar 

  38. Baker, S.J., Markowitz, S., Fearon, E.R., Willson, J.K. & Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249, 912–915 (1990).

    CAS  Article  Google Scholar 

  39. D'Orazi, G. et al. Exogenous wt-p53 protein is active in transformed cells but not in their non-transformed counterparts: implications for cancer gene therapy without tumor targeting. J. Gene Med. 2, 11–21 (2000).

    CAS  Article  Google Scholar 

  40. Nieves-Neira, W. et al. DNA protein cross-links produced by NSC 652287, a novel thiophene derivative active against human renal cancer cells. Mol. Pharmacol. 56, 478–484 (1999).

    CAS  Article  Google Scholar 

  41. Rivera, M.I. et al. Selective toxicity of the tricyclic thiophene NSC 652287 in renal carcinoma cell lines: differential accumulation and metabolism. Biochem. Pharmacol. 57, 1283–1295 (1999).

    CAS  Article  Google Scholar 

  42. Selivanova, G. et al. The single-stranded DNA end binding site of p53 coincides with the C- terminal regulatory region. Nucleic Acids Res. 24, 3560–3567 (1996).

    CAS  Article  Google Scholar 

  43. Schuhmacher, M. et al. Control of cell growth by c-Myc in the absence of cell division. Curr. Biol. 9, 1255–1258 (1999).

    CAS  Article  Google Scholar 

  44. Felsher, D.W. & Bishop, J.M. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl. Acad. Sci. USA 96, 3940–3944 (1999).

    CAS  Article  Google Scholar 

  45. Vigo, E. et al. CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol. Cell. Biol. 19, 6379–6395 (1999).

    CAS  Article  Google Scholar 

  46. Hengstermann, A., Linares, L.K., Ciechanover, A., Whitaker, N.J. & Scheffner, M. Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. Proc. Natl. Acad. Sci. USA 98, 1218–1223 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the Drug Synthesis & Chemistry Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, for the library of low molecular weight compounds. We are indebted to all our colleagues for sharing cell lines and reagents with us. This work was supported by project grants from the Swedish Cancer Society (Cancerfonden), Swedish Research Council, Graduate Research School for Genomics and Bioinformatics (Stockholm), Lars Hiertas Minne and Robert Lundbergs Foundations and the Cancer Society of Stockholm. P.B. is a recipient of a fellowship from Wenner-Gren Foundation, Stockholm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Selivanova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

RITA did not induce p53 and did not suppress the growth of mouse cell lines in a p53-dependent manner. (PDF 297 kb)

Supplementary Fig. 2

Studies of RITA interaction with proteins using fluorescence correlation spectroscopy. (PDF 960 kb)

Supplementary Fig. 3

RITA did not inhibit the binding of p53 to the monoclonal antibody DO1 and Bcl-xL. (PDF 435 kb)

Supplementary Table 1

Growth suppression induced by RITA in different cell lines (PDF 83 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Issaeva, N., Bozko, P., Enge, M. et al. Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors. Nat Med 10, 1321–1328 (2004). https://doi.org/10.1038/nm1146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing