Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pharmacological reactivation of p53 in the era of precision anticancer medicine

Abstract

p53, which is encoded by the most frequently mutated gene in cancer, TP53, is an attractive target for novel cancer therapies. Despite major challenges associated with this approach, several compounds that either augment the activity of wild-type p53 or restore all, or some, of the wild-type functions to p53 mutants are currently being explored. In wild-type TP53 cancer cells, p53 function is often abrogated by overexpression of the negative regulator MDM2, and agents that disrupt p53–MDM2 binding can trigger a robust p53 response, albeit potentially with induction of p53 activity in non-malignant cells. In TP53-mutant cancer cells, compounds that promote the refolding of missense mutant p53 or the translational readthrough of nonsense mutant TP53 might elicit potent cell death. Some of these compounds have been, or are being, tested in clinical trials involving patients with various types of cancer. Nonetheless, no p53-targeting drug has so far been approved for clinical use. Advances in our understanding of p53 biology provide some clues as to the underlying reasons for the variable clinical activity of p53-restoring therapies seen thus far. In this Review, we discuss the intricate interactions between p53 and its cellular and microenvironmental contexts and factors that can influence p53’s activity. We also propose several strategies for improving the clinical efficacy of these agents through the complex perspective of p53 functionality.

Key points

  • A range of cell-intrinsic and cell-extrinsic factors can affect the activity of p53, as exemplified by the regulation of p53 degradation by MDM2–MDM4 (cell-intrinsic), and the effects of cytokine-producing cancer-associated fibroblasts or a metabolite-producing microbiota on p53 levels and function (cell-extrinsic).

  • Activation of wild-type p53 in non-malignant cells can cause substantial toxicity, given that p53 levels are normally tightly controlled by MDM2–MDM4 and that unbridled p53 activity can trigger irreversible cellular demise.

  • The heterogeneity of cancer-driving TP53 mutations and the existence of tumours with wild-type TP53 that nonetheless lack functional p53 creates various forms of p53 dysfunction, which challenges the development of effective p53-reactivating therapies for large groups of patients.

  • Owing to the heterogeneous effects of different TP53 variants and p53 protein aberrations, effective therapies capable of restoring wild-type p53 function will most probably require personalization according to the specific p53 functionality of each patient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Domain structure of the p53 protein and the spectrum of TP53 mutations in cancer.
Fig. 2: The clonal evolution of TP53-mutant tumours.
Fig. 3: Complex interplay between TP53-mutant cancer cells and their microenvironment.
Fig. 4: Therapeutic strategies for wild-type TP53 cancers.
Fig. 5: Therapeutic strategies for TP53-mutant cancers.
Fig. 6: A practical flowchart for assessing TP53 status and p53 functionality in patients with cancer.

Similar content being viewed by others

References

  1. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. COSMIC. COSMIC v99, released 28-Nov-23. COSMIC https://cancer.sanger.ac.uk/cosmic (2023).

  3. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Andrysik, Z. et al. Identification of a core TP53 transcriptional program with highly distributed tumor suppressive activity. Genome Res. 27, 1645–1657 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fischer, M. Census and evaluation of p53 target genes. Oncogene 36, 3943–3956 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kruiswijk, F., Labuschagne, C. F. & Vousden, K. H. p53 in survival, death and metabolic health: a lifeguard with a license to kill. Nat. Rev. Mol. Cell. Biol. 16, 393–405 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Boutelle, A. M. & Attardi, L. D. p53 and tumor suppression: it takes a network. Trends Cell. Biol. 31, 298–310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Levine, A. J. The many faces of p53: something for everyone. J. Mol. Cell. Biol. 11, 524–530 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marchenko, N. D. & Moll, U. M. Mitochondrial death functions of p53. Mol. Cell. Oncol. 1, e955995 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boettcher, S. et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 365, 599–604 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Diamond, B. et al. Tracking the evolution of therapy-related myeloid neoplasms using chemotherapy signatures. Blood 141, 2359–2371 (2023).

    CAS  PubMed  Google Scholar 

  16. Sabapathy, K. & Lane, D. P. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat. Rev. Clin. Oncol. 15, 13–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Xiong, S. et al. Differential gain-of-function activity of three p53 hotspot mutants in vivo. Cancer Res. 82, 1926–1936 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bernard, E. et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 26, 1549–1556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoyos, D. et al. Fundamental immune–oncogenicity trade-offs define driver mutation fitness. Nature 606, 172–179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klimovich, B. et al. p53 partial loss-of-function mutations sensitize to chemotherapy. Oncogene 41, 1011–1023 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Miller, L. D. et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc. Natl Acad. Sci. USA 102, 13550–13555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bouaoun, L. et al. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum. Mutat. 37, 865–876 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Kratz, C. P. et al. Analysis of the Li-Fraumeni spectrum based on an international germline TP53 variant data set: an International Agency for Research on Cancer TP53 database analysis. JAMA Oncol. 7, 1800–1805 (2021).

    Article  PubMed  Google Scholar 

  24. Pinto, E. M. et al. XAF1 as a modifier of p53 function and cancer susceptibility. Sci. Adv. 6, eaba3231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leung, J. C. et al. Common activities and predictive gene signature identified for genetic hypomorphs of TP53. Proc. Natl Acad. Sci. USA 120, e2212940120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou, W. et al. Full sequencing of TP53 identifies identical mutations within in situ and invasive components in breast cancer suggesting clonal evolution. Mol. Oncol. 3, 214–219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lomakin, A. et al. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature 611, 594–602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galandiuk, S. et al. Field cancerization in the intestinal epithelium of patients with Crohn’s ileocolitis. Gastroenterology 142, 855–864.e8 (2012).

    Article  PubMed  Google Scholar 

  29. Griffin, R. Differential prognosis of single and multiple TP53 abnormalities in high-count MBL and untreated CLL. Blood Adv. 7, 3169–3179 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wong, T. N. et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518, 552–555 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Lundberg, P. et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 123, 2220–2228 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Maslah, N. et al. Single-cell analysis reveals selection of TP53-mutated clones after MDM2 inhibition. Blood Adv. 6, 2813–2823 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rasche, L. et al. The spatio-temporal evolution of multiple myeloma from baseline to relapse-refractory states. Nat. Commun. 13, 4517 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gruber, M. et al. Growth dynamics in naturally progressing chronic lymphocytic leukaemia. Nature 570, 474–479 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hakkarainen, M. et al. The clinical picture of ERCC6L2 disease: from bone marrow failure to acute leukemia. Blood 141, 2853–2866 (2023).

    CAS  PubMed  Google Scholar 

  36. Li, C. et al. Whole exome and transcriptome sequencing reveal clonal evolution and exhibit immune-related features in metastatic colorectal tumors. Cell Death Discov. 7, 222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karlsson, K. et al. Deterministic evolution and stringent selection during preneoplasia. Nature 618, 383–393 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prokocimer, M., Molchadsky, A. & Rotter, V. Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood 130, 699–712 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oliner, J. D., Saiki, A. Y. & Caenepeel, S. The role of MDM2 amplification and overexpression in tumorigenesis. Cold Spring Harb. Perspect. Med. 6, a026336 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Op. Genet. Dev. 10, 94–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Trinidad, A. G. et al. Interaction of p53 with the CCT complex promotes protein folding and wild-type p53 activity. Mol. Cell. 50, 805–817 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Benor, G. et al. Transcriptional profiling reveals a subset of human breast tumors that retain wt TP53 but display mutant p53-associated features. Mol. Oncol. 14, 1640–1652 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tuval, A. et al. Pseudo-mutant p53 is a unique phenotype of DNMT3A-mutated pre-leukemia. Haematologica 107, 2548–2561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haney, S. L. et al. Dnmt3a is a haploinsufficient tumor suppressor in CD8+ peripheral T cell lymphoma. PLoS Genet. 12, e1006334 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kodama, M. et al. Expression of mutant type-p53 products in H pylori-associated chronic gastritis. World J. Gastroenterol. 13, 1541–1546 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu, J., Wang, M., Li, X. & Sheng, Y. Conformation changes of p53 proteins in regulation of murine T lymphocyte proliferation. Cell Mol. Biol. Res. 39, 27–31 (1993).

    CAS  PubMed  Google Scholar 

  47. Milner, J. & Watson, J. V. Addition of fresh medium induces cell cycle and conformation changes in p53, a tumour suppressor protein. Oncogene 5, 1683–1690 (1990).

    CAS  PubMed  Google Scholar 

  48. Sasaki, M., Nie, L. & Maki, C. G. MDM2 binding induces a conformational change in p53 that is opposed by heat-shock protein 90 and precedes p53 proteasomal degradation. J. Biol. Chem. 282, 14626–14634 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Hainaut, P. & Milner, J. A structural role for metal ions in the “wild-type” conformation of the tumor suppressor protein p53. Cancer Res. 53, 1739–1742 (1993).

    CAS  PubMed  Google Scholar 

  50. Hainaut, P. & Milner, J. Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res. 53, 4469–4473 (1993).

    CAS  PubMed  Google Scholar 

  51. Furth, N. et al. Down-regulation of LATS kinases alters p53 to promote cell migration. Genes. Dev. 29, 2325–2330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, W. & Deisseroth, A. B. Conformational change of p53 protein in growth factor-stimulated human myelogenous leukemia cells. Leuk. Lymphoma 14, 251–255 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Zhu, Y. M., Bradbury, D. & Russell, N. Expression of different conformations of p53 in the blast cells of acute myeloblastic leukaemia is related to in vitro growth characteristics. Br. J. Cancer 68, 851–855 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rivlin, N. et al. Rescue of embryonic stem cells from cellular transformation by proteomic stabilization of mutant p53 and conversion into WT conformation. Proc. Natl Acad. Sci. USA 111, 7006–7011 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blagosklonny, M. V., Toretsky, J. & Neckers, L. Geldanamycin selectively destabilizes and conformationally alters mutated p53. Oncogene 11, 933–939 (1995).

    CAS  PubMed  Google Scholar 

  56. Tal, P. et al. Cancer therapeutic approach based on conformational stabilization of mutant P53 protein by small peptides. Oncotarget 7, 11817–11837 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bykov, V. J. N., Eriksson, S. E., Bianchi, J. & Wiman, K. G. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer 18, 89–102 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Izquierdo, E. et al. Extracellular vesicles and PD-L1 suppress macrophages, inducing therapy resistance in TP53-deficient B-cell malignancies. Blood 139, 3617–3629 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Tan, X. et al. A protumorigenic secretory pathway activated by p53 deficiency in lung adenocarcinoma. J. Clin. Invest. 131, e137186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maddalena, M. et al. TP53 missense mutations in PDAC are associated with enhanced fibrosis and an immunosuppressive microenvironment. Proc. Natl Acad. Sci. USA 118, e2025631118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arandkar, S. et al. Altered p53 functionality in cancer-associated fibroblasts contributes to their cancer-supporting features. Proc. Natl Acad. Sci. USA 115, 6410–6415 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheteh, E. H. et al. Interleukin-6 derived from cancer-associated fibroblasts attenuates the p53 response to doxorubicin in prostate cancer cells. Cell Death Discov. 6, 42 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kadosh, E. et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586, 133–138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martins, C. P., Brown-Swigart, L. & Evan, G. I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323–1334 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hsiue, E. H. et al. Targeting a neoantigen derived from a common TP53 mutation. Science 371, eabc8697 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, W. W. et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum. Gene Ther. 29, 160–179 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Li, Y. et al. Expert consensus on the clinical application of recombinant adenovirus human p53 for head and neck cancers. Int. J. Oral. Sci. 13, 38 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nemunaitis, J. et al. Biomarkers predict p53 gene therapy efficacy in recurrent squamous cell carcinoma of the head and neck. Clin. Cancer Res. 15, 7719–7725 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Bowman, K. E. R. et al. p53-Bad* fusion gene therapy induces apoptosis in vitro and reduces zebrafish tumor burden in hepatocellular carcinoma. Mol. Pharm. 20, 331–340 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Hassin, O. & Oren, M. Drugging p53 in cancer: one protein, many targets. Nat. Rev. Drug. Discov. 22, 127–144 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Nishikawa, S. & Iwakuma, T. Drugs targeting p53 mutations with FDA approval and in clinical trials. Cancers 15, 429 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Daver, N. G. et al. TP53-mutated myelodysplastic syndrome and acute myeloid leukemia: biology, current therapy, and future directions. Cancer Discov. 12, 2516–2529 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu, H. et al. Targeting p53-MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials. J. Hematol. Oncol. 15, 91 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Brooks, C. L. & Gu, W. p53 ubiquitination: Mdm2 and beyond. Mol. Cell. 21, 307–315 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Klein, A. M., de Queiroz, R. M., Venkatesh, D. & Prives, C. The roles and regulation of MDM2 and MDMX: it is not just about p53. Genes. Dev. 35, 575–601 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Feeley, K. P., Adams, C. M., Mitra, R. & Eischen, C. M. Mdm2 is required for survival and growth of p53-deficient cancer cells. Cancer Res. 77, 3823–3833 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Adams, C. M. et al. Targeted MDM2 degradation reveals a new vulnerability for p53-inactivated triple-negative breast cancer. Cancer Discov. 13, 1210–1229 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Yee, K. et al. Murine double minute 2 inhibition alone or with cytarabine in acute myeloid leukemia: results from an idasanutlin phase 1/1b study. Leuk. Res. 100, 106489 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Konopleva, M. Y. et al. Idasanutlin plus cytarabine in relapsed or refractory acute myeloid leukemia: results of the MIRROS trial. Blood Adv. 6, 4147–4156 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Daver, N. G. et al. Venetoclax and idasanutlin in relapsed/refractory AML: a nonrandomized, open-label phase 1b trial. Blood 141, 1265–1276 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Napolitano, R. et al. Kevetrin induces apoptosis in TP53 wild-type and mutant acute myeloid leukemia cells. Oncol. Rep. 44, 1561–1573 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Carvajal, L. A. et al. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci. Transl. Med. 10, eaao3003 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Saleh, M. N. et al. Phase 1 trial of ALRN-6924, a dual inhibitor of MDMX and MDM2, in patients with solid tumors and lymphomas bearing wild-type TP53. Clin. Cancer Res. 27, 5236–5247 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ueda, K. et al. MDMX acts as a pervasive preleukemic-to-acute myeloid leukemia transition mechanism. Cancer Cell 39, 529–547.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Peng, X. et al. APR-246/PRIMA-1MET inhibits thioredoxin reductase 1 and converts the enzyme to a dedicated NADPH oxidase. Cell Death Dis. 4, e881 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tessoulin, B. et al. PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance. Blood 124, 1626–1636 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Haffo, L. et al. Inhibition of the glutaredoxin and thioredoxin systems and ribonucleotide reductase by mutant p53-targeting compound APR-246. Sci. Rep. 8, 12671 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Liu, D. S. et al. Inhibiting the system xC/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat. Commun. 8, 14844 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rabik, C. A. & Dolan, M. E. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev. 33, 9–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Mohell, N. et al. APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells. Cell Death Dis. 6, e1794 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maslah, N. et al. Synergistic effects of PRIMA-1Met (APR-246) and 5-azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia. Haematologica 105, 1539–1551 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bally, C. et al. Prognostic value of TP53 gene mutations in myelodysplastic syndromes and acute myeloid leukemia treated with azacitidine. Leuk. Res. 38, 751–755 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Bewersdorf, J. P. et al. Clinical outcomes and characteristics of patients with TP53-mutated acute myeloid leukemia or myelodysplastic syndromes: a single center experience. Leuk. Lymphoma 61, 2180–2190 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sallman, D. A. et al. Clonal suppression of TP53 mutant MDS and oligoblastic AML with hypomethylating agent therapy improves overall survival. Blood 132, 1817 (2018).

    Article  Google Scholar 

  100. Montalban-Bravo, G. et al. Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes. Blood Adv. 4, 482–495 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cluzeau, T. et al. Eprenetapopt plus azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia: a phase II study by the Groupe Francophone des Myélodysplasies (GFM). J. Clin. Oncol. 39, 1575–1583 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sallman, D. et al. Eprenetapopt (APR-246) and azacitidine in TP53-mutant myelodysplastic syndromes. J. Clin. Oncol. 39, 1584–1594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT03745716?tab=results (2022).

  104. Mishra, A. et al. Eprenetapopt plus azacitidine after allogeneic hematopoietic stem-cell transplantation for TP53-mutant acute myeloid leukemia and myelodysplastic syndromes. J. Clin. Oncol. 40, 3985–3993 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Ghosh, A. et al. Increased p53 expression induced by APR-246 reprograms tumor-associated macrophages to augment immune checkpoint blockade. J. Clin. Invest. 132, e148141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Park, H. et al. Phase Ib study of eprenetapopt (APR-246) in combination with pembrolizumab in patients with advanced or metastatic solid tumors. ESMO Open. 7, 100573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Garcia-Manero, G. et al. Eprenetapopt combined with venetoclax and azacitidine in TP53-mutated acute myeloid leukaemia: a phase 1, dose-finding and expansion study. Lancet Haematol. 10, e272–e283 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. DiNardo, C. D. et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood 135, 791–803 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. DiNardo, C. D. et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl. J. Med. 383, 617–629 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Bao, W. et al. PRIMA-1Met/APR-246 induces wild-type p53-dependent suppression of malignant melanoma tumor growth in 3D culture and in vivo. Cell Cycle 10, 301–307 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, Q. et al. APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis. 9, 439 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Khairul, I., Wang, Q. Q., Jiang, Y. H., Wang, C. & Naranmandura, H. Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8, 23905–23926 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lo-Coco, F. et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N. Engl. J. Med. 369, 111–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Chen, S. et al. Arsenic trioxide rescues structural p53 mutations through a cryptic allosteric site. Cancer Cell 39, 225–239.e8 (2021).

    Article  PubMed  Google Scholar 

  115. Dumbrava, E. E. et al. First-in-human study of PC14586, a small molecule structural corrector of Y220C mutant p53, in patients with advanced solid tumors harboring a TP53 Y220C mutation [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 3003 (2022).

    Article  Google Scholar 

  116. Linde, L. & Kerem, B. Introducing sense into nonsense in treatments of human genetic diseases. Trends Genet. 24, 552–563 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Howard, M., Frizzell, R. A. & Bedwell, D. M. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat. Med. 2, 467–469 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. Burke, J. F. & Mogg, A. E. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res. 13, 6265–6272 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Floquet, C., Deforges, J., Rousset, J. P. & Bidou, L. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res. 39, 3350–3362 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Floquet, C., Hatin, I., Rousset, J. P. & Bidou, L. Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet. 8, e1002608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, M. et al. Synergistic rescue of nonsense mutant tumor suppressor p53 by combination treatment with aminoglycosides and Mdm2 inhibitors. Front. Oncol. 7, 323 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Friesen, W. J. et al. The nucleoside analog clitocine is a potent and efficacious readthrough agent. RNA 23, 567–577 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Crawford, D. K., Alroy, I., Sharpe, N., Goddeeris, M. M. & Williams, G. ELX-02 generates protein via premature stop codon read-through without inducing native stop codon read-through proteins. J. Pharmacol. Exp. Ther. 374, 264–272 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Trzaska, C. et al. 2,6-Diaminopurine as a highly potent corrector of UGA nonsense mutations. Nat. Commun. 11, 1509 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Baradaran-Heravi, A. et al. Effect of small molecule eRF3 degraders on premature termination codon readthrough. Nucleic Acids Res. 49, 3692–3708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Palomar-Siles, M. et al. Translational readthrough of nonsense mutant TP53 by mRNA incorporation of 5-fluorouridine. Cell Death Dis. 13, 997 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ivanov, A. et al. PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucleic Acids Res. 44, 7766–7776 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kariv, R. et al. Resorting the function of the colorectal cancer gatekeeper adenomatous polyposis coli. Int. J. Cancer 146, 1064–1074 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, Z. et al. The anti-cancer agent APR-246 can activate several programmed cell death processes to kill malignant cells. Cell Death Differ. 30, 1033–1046 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Birsen, R. et al. APR-246 induces early cell death by ferroptosis in acute myeloid leukemia. Haematologica 107, 403–416 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Fujihara, K. M. et al. Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction. Sci. Adv. 8, eabm9427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Milne, J. V. et al. Transketolase regulates sensitivity to APR-246 in p53-null cells independently of oxidative stress modulation. Sci. Rep. 11, 4480 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Guiley, K. Z. & Shokat, K. M. A small molecule reacts with the p53 somatic mutant Y220C to rescue wild-type thermal stability. Cancer Discov. 13, 56–69 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Tang, Y. et al. Repurposing antiparasitic antimonials to noncovalently rescue temperature-sensitive p53 mutations. Cell Rep. 39, 110622 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Friedman, D. N. et al. Clonal hematopoiesis in survivors of childhood cancer. Blood Adv. 7, 4102–4106 (2023).

    Article  Google Scholar 

  136. Calapre, L. et al. Identification of TP53 mutations in circulating tumour DNA in high grade serous ovarian carcinoma using next generation sequencing technologies. Sci. Rep. 13, 278 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Synnott, N. C. et al. The mutant p53-targeting compound APR-246 induces ROS-modulating genes in breast cancer cells. Transl. Oncol. 11, 1343–1349 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ali, D. et al. Anti-leukaemic effects induced by APR-246 are dependent on induction of oxidative stress and the NFE2L2/HMOX1 axis that can be targeted by PI3K and mTOR inhibitors in acute myeloid leukaemia cells. Br. J. Haematol. 174, 117–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Maiti, A. & Daver, N. G. Eprenetapopt in the post-transplant setting: mechanisms and future directions. J. Clin. Oncol. 40, 3994–3997 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ceder, S. et al. A thiol-bound drug reservoir enhances APR-246-induced mutant p53 tumor cell death. EMBO Mol. Med. 13, e10852 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Ho, J. N. H. G. et al. Targeting MDM2 enhances antileukemia immunity after allogeneic transplantation via MHC-II and TRAIL-R1/2 upregulation. Blood 140, 1167–1181 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhou, J. et al. The ubiquitin ligase MDM2 sustains STAT5 stability to control T cell-mediated antitumor immunity. Nat. Immunol. 22, 460–470 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Subbiah, V. The next generation of evidence-based medicine. Nat. Med. 29, 49–58 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Kotler, E. et al. A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol. Cell. 71, 178–190.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Lipkova, J. et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell 40, 1095–1110 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Joerger, A. C. & Fersht, A. R. The tumor suppressor p53: from structures to drug discovery. Cold. Spring Harb. Perspect. Biol. 2, a000919 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zhang, Q. et al. Evolutionary history of the p53 family DNA-binding domain: insights from an Alvinella pompejana homolog. Cell Death Dis. 13, 214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. National Cancer Institute. The TP53 database. The TP53 Database tp53.isb-cgc.org/ (2023).

  149. Soussi, T. & Wiman, K. G. TP53: an oncogene in disguise. Cell Death Differ. 22, 1239–1249 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sabapathy, K. & Lane, D. P. Understanding p53 functions through p53 antibodies. J. Mol. Cell Biol. 11, 317–329 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Light, N. et al. Germline TP53 mutations undergo copy number gain years prior to tumor diagnosis. Nat. Commun. 14, 77 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  153. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fabre, M. A. et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 606, 335–342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Colom, B. et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598, 510–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sperling, A. S. et al. Lenalidomide promotes the development of TP53-mutated therapy-related myeloid neoplasms. Blood 140, 1753–1763 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lodé, L. et al. Emergence and evolution of TP53 mutations are key features of disease progression in myelodysplastic patients with lower-risk del(5q) treated with lenalidomide. Haematologica 103, e143–e146 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bolton, K. L. et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat. Genet. 52, 1219–1226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Marcellino, B. K. et al. Transient expansion of TP53 mutated clones in polycythemia vera patients treated with idasanutlin. Blood Adv. 4, 5735–5744 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Raver-Shapira, N. et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell. 26, 731–743 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Vennin, C. et al. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat. Commun. 10, 3637 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Barak, Y., Juven, T., Haffner, R. & Oren, M. Mdm2 expression is induced by wild type-p53 activity. EMBO J. 12, 461–468 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gu, J. et al. Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J. Biol. Chem. 277, 19251–19254 (2002).

    Article  CAS  PubMed  Google Scholar 

  164. Wade, M., Li, Y. C. & Wahl, G. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer 13, 83–96 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lambert, J. M. R. et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15, 376–388 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Degtjarik, O. et al. Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Nat. Commun. 12, 7057 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu, X. et al. Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res. 41, 6034–6044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. NCCN Guidelines Version 2.2024 Breast, Ovarian, and/or Pancreatic Cancer Genetic Assessment, https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf (accessed 13 December 2023).

  169. Li, F. P. et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 48, 5358–5362 (1988).

    CAS  PubMed  Google Scholar 

  170. Chompret, A. et al. Sensitivity and predictive value of criteria for p53 germline mutation screening. J. Med. Genet. 38, 43–47 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bougeard, G. et al. Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J. Clin. Oncol. 33, 2345–2352 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Kato, S. et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl Acad. Sci. USA 100, 8424–8429 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Giacomelli, A. O. et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat. Genet. 50, 1381–1387 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ben-Cohen, G. et al. TP53_PROF: a machine learning model to predict impact of missense mutations in TP53. Brief. Bioinform. 23, bbab524 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  175. The TP53 Web Site. UMD TP53 mutation database.The TP53 Web Site p53.fr/the-database (2017).

  176. Béroud, C. & Soussi, T. The UMD-p53 database: new mutations and analysis tools. Hum. Mutat. 21, 176–181 (2003).

    Article  PubMed  Google Scholar 

  177. Carbonnier, V., Leroy, B., Rosenberg, S. & Soussi, T. Comprehensive assessment of TP53 loss of function using multiple combinatorial mutagenesis libraries. Sci. Rep. 10, 20368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Donehower, L. A. Integrated analysis of TP53 gene and pathway alterations in The Cancer Genome Atlas. Cell Rep. 28, 1370–1384.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Levine, A. J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 20, 471–480 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Sermeus, A. & Michiels, C. Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis. 2, e164 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wang, Y., Pakunlu, R. I., Tsao, W., Pozharov, V. & Minko, T. Bimodal effect of hypoxia in cancer: role of hypoxia inducible factor in apoptosis. Mol. Pharm. 1, 156–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Tashakori, M. et al. TP53 copy number and protein expression inform mutation status across risk categories in acute myeloid leukemia. Blood 140, 58–72 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Saft, L. et al. p53 protein expression independently predicts outcome in patients with lower-risk myelodysplastic syndromes with del(5q). Haematologica 99, 1041–1049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. McGraw, K. L. et al. Immunohistochemical pattern of p53 is a measure of TP53 mutation burden and adverse clinical outcome in myelodysplastic syndromes and secondary acute myeloid leukemia. Haematologica 101, e320–e323 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the European Research Council (advanced ERC grant no. 694825-TRANSREAD), the Swedish Research Council (VR 2017-01509; 2021-02064), the Swedish Cancer Fund (Cancerfonden 18 0774; 21 1473 Pj 01 H), the Swedish Childhood Cancer Fund (Barncancerfonden PR2020-0042) and Radiumhemmets Forskingsfonder (201383). We apologize to all authors whose work could not be referenced owing to limited space.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for this manuscript. A.T. and K.G.W. made a substantial contribution to discussions of content. All authors wrote the manuscript and edited and/or reviewed the manuscript prior to submission.

Corresponding author

Correspondence to Klas G. Wiman.

Ethics declarations

Competing interests

K.G.W. has received research funding from, is a cofounder and shareholder of, and has previously received a salary from Aprea Therapeutics, a company that develops p53-based cancer therapies including eprenetapopt. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks M. Oren, T. Iwakuma and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuval, A., Strandgren, C., Heldin, A. et al. Pharmacological reactivation of p53 in the era of precision anticancer medicine. Nat Rev Clin Oncol 21, 106–120 (2024). https://doi.org/10.1038/s41571-023-00842-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00842-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing