Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Characterization of a newly discovered T-cell receptor β-chain heterodimer expressed on a CD8+ bone marrow subpopulation that promotes allogeneic stem cell engraftment

Abstract

The facilitating cell is a rare CD8+ bone marrow subpopulation that can enhance allogeneic hematopoietic stem cell engraftment across complete major histocompatibility complex barriers without inducing acute graft-versus-host disease. Here we describe a CD3ɛ-associated complex on the facilitating cell surface that consists of the T-cell receptor β-chain disulfide-linked to a previously unknown 33-kilodalton glycoprotein. Provisionally called FCp33, this glycoprotein does not represent any of the known protein chains or surrogates associated with CD3–T-cell receptor β. Expression of this CD3–T-cell receptor β–FCp33 complex directly correlates with the facilitating cell's functional ability to enhance allogeneic stem cell engraftment in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow cytometric analysis of facilitating cells and splenic T cells.
Figure 2: Initial characterization of the FCp33 complex.
Figure 3: Biotin western blots of serial immunoprecipitation experiments.
Figure 4: Biochemical characterization of FCp33.
Figure 5: Correlation of CD3–TCR-β–FCp33 expression with facilitation of allogeneic SC engraftment.

Similar content being viewed by others

References

  1. Kaufman, C.L. et al. Phenotypic characterization of a novel bone marrow-derived cell that facilitates engraftment of allogeneic bone marrow stem cells. Blood 84, 2436–2446 ( 1994).

    CAS  PubMed  Google Scholar 

  2. Spangrude, G.J., Heimfeld, S. & Weissman I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58– 62 (1988).

    Article  CAS  Google Scholar 

  3. El-Badri, N.S., Wang, B.Y., Cherry & Good, R.A. Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Exp. Hematol. 26, 110–116 (1998).

    CAS  PubMed  Google Scholar 

  4. Gaines, B.A., Colson, Y.L., Kaufman, C.K. & Ildstad, S.T. Facilitating cells enable engraftment of purified liver fetal stem cells in allogeneic recipients. Exp. Hematol. 24, 902–913 (1996).

    CAS  PubMed  Google Scholar 

  5. Neipp, M., Zorina, T., Domenick, M.A., Exner, B.G. & Ildstad, S.T. Effect of FLT3 ligand and granulocyte colony stimulating factor on expansion and mobilization of facilitating cells and hematopoietic stem cells in mice: kinetics and repopulating potential . Blood 92, 3177–3188 (1998).

    CAS  PubMed  Google Scholar 

  6. Gale, R.P. & Reisner, Y. Graft rejection and graft-versus-host disease: mirror images. Lancet 1, 1468– 1470 (1986).

    Article  CAS  Google Scholar 

  7. Armitage, J.O. Medical progress: bone marrow transplantation. N. Engl. J. Med. 330, 827–838 ( 1994).

    Article  CAS  Google Scholar 

  8. Tanaka, J., Imamura, M., Kasai, M., Asaka, M. & Torok-Storb, B. The role of accessory cells in allogeneic peripheral blood stem cell transplantation. Int. J. Hematol. 69 , 70–74 (1999).

    CAS  PubMed  Google Scholar 

  9. Murphy, W.J., Bennett, M., Kumar, V. & Longo, D. Donor type activated natural killer cells promote marrow engraftment and B cell development during allogeneic bone marrow transplantation. J. Immunol. 148, 2953–2960 (1992).

    CAS  PubMed  Google Scholar 

  10. Lapidot, T., Faktorowich, T., Lubin, I. & Reisner, Y. Enhancement of T cell-depleted bone marrow allografts in the absence of graft-versus-host-disease is mediated by CD8+CD4 and not by CD8CD4+ thymocytes. Blood 80, 2406–2411 (1992).

    CAS  PubMed  Google Scholar 

  11. Murphy, W.J., Kumar, V., Cope, J. & Bennett, M. An absence of T cells in murine bone marrow allografts leads to an increased susceptibility to rejection by natural killer cells and T cells. J. Immunol. 144, 3305–3311 (1990).

    CAS  PubMed  Google Scholar 

  12. Sykes, M. et al. Effects of T cell depletion in radiation bone marrow chimeras. III. Characterization of allogeneic bone marrow cell populations that increase allogeneic chimerism independently of graft versus host disease in mixed marrow recipients. J. Immunol. 143, 3503– 3511 (1989).

    CAS  PubMed  Google Scholar 

  13. Martin, P.J. Donor CD8 cells prevent allogeneic marrow graft rejection in mice: potential implications for marrow transplantation in humans. J. Exp. Med. 178, 703–712 ( 1993).

    Article  CAS  Google Scholar 

  14. Fowler, D.H., Whitfield, B., Livingston, M., Chrobak, P. & Gress, R.E. Non-host-reactive donor CD8+ T cells of Tc2 phenotype potently inhibit marrow graft rejection . Blood 11, 4045–4050 (1998).

    Google Scholar 

  15. Gallardo, D. et al. Low-dose donor CD8+ cells in the CD4-depleted graft prevent allogeneic marrow graft rejection and severe graft-versus-host disease for chronic myeloid leukemia patients in first chronic phase. Bone Marrow Transplant. 20, 945–952 (1997).

    Article  CAS  Google Scholar 

  16. Ley, S.C., Tan, K.N., Kubo, R., Sy, M. & Terhorst, C. Surface expression of CD3 in the absence of the T cell receptor (TCR): evidence for sorting of partial TCR/CD3 complexes in a post-endoplasmic reticulum compartment. Eur. J. Immunol. 19, 2309–2317 (1989).

    Article  CAS  Google Scholar 

  17. Wiest, D.L., Burgess, W.H., McKean, D., Kearse, K.P. & Singer, A. The molecular chaperone calnexin is expressed on the surface of immature thymocytes in association with clonotype-independent CD3 complexes. EMBO J. 14, 3425– 3433 (1995).

    Article  CAS  Google Scholar 

  18. Groettrup, M. & von Boehmer, H. T cell receptor β chain dimers on immature thymocytes from normal mice. Eur. J. Immunol. 23, 1393–1396 ( 1993).

    Article  CAS  Google Scholar 

  19. Groettrup, M. et al. A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor β chain and a 33 kD glycoprotein. Cell 75, 283–294 ( 1993).

    Article  CAS  Google Scholar 

  20. Samelson, L.E., Harford, J.B. & Klausner R.D. Identification of the components of the murine T cell antigen receptor complex. Cell 43, 223– 231 (1985).

    Article  CAS  Google Scholar 

  21. Marrack, P. & Kappler, J. The T cell receptor. Science 238, 1073–1079 ( 1987).

    Article  CAS  Google Scholar 

  22. Hochstenbach, F. & Brenner, M.B. T cell receptor delta chain can substitute for alpha to form a beta-delta heterodimer. Nature 340, 562–565 ( 1989).

    Article  CAS  Google Scholar 

  23. Kishi, H. et al. Surface expression of the β T cell receptor (TCR) chain in the absence of other TCR or CD3 proteins on immature T cells. EMBO J. 10, 93–100 ( 1991).

    Article  CAS  Google Scholar 

  24. Jacobs, H. et al. CD3 components at the cell surface of pro-T cells can mediate pre-T cell development in vivo. Eur. J. Immunol. 24, 934–939 (1994).

    Article  CAS  Google Scholar 

  25. Minami, Y., Weissman, A.M., Samelson, L.E. & Klausner, R.D. Building a multichain receptor: synthesis, degradation, and assembly of the T-cell antigen. Proc. Natl. Acad. Sci. USA 84, 2688–2692 (1987).

    Article  CAS  Google Scholar 

  26. Mombaerts, P. et al. RAG-1 deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 ( 1992).

    Article  CAS  Google Scholar 

  27. Shinkai, Y. et al. Restoration of T cell development in T cell deficient mice by functional TCR transgenes. Science 259, 822–825 (1993).

    Article  CAS  Google Scholar 

  28. von Boehmer, H. & Fehling, H.J. Structure and function of the pre-T cell receptor. Annu. Rev. Immunol. 15, 433–452 (1997).

    Article  CAS  Google Scholar 

  29. Berger, M.A. et al. Subunit composition of pre-T cell receptor complexes expressed by primary thymocytes: CD3δ is physically associated but not functionally required. J. Exp. Med. 186, 1461– 1467 (1997).

    Article  CAS  Google Scholar 

  30. Modigliani, Y., Burlen-Defranoux, O., Bandeira, A. & Coutinho, A. Neonatal tolerance to alloantigens is induced by enriched antigen-presenting cells. Scand. J. Immunol. 46, 117– 121 (1997).

    Article  CAS  Google Scholar 

  31. Drobyski, W.R., Majewski, D. & Hanson G. Graft-facilitating doses of ex vivo activated gammadelta T cells do not cause lethal murine graft-vs.-host disease. Biol. Blood Marrow Transplant. 5, 222– 230 (1999).

    Article  CAS  Google Scholar 

  32. Ildstad, S.T. & Sachs, D.H. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307, 168– 170 (1984).

    Article  CAS  Google Scholar 

  33. Meier, T., Arni, S., Malarkannan, S., Poincelet, M. & Hoessli, D. Immunodetection of biotinylated lymphocyte-surface proteins by enhanced chemiluminescence: a nonradioactive method for cell-surface protein analysis. Anal. Biochem. 204, 220–226 (1992).

    Article  CAS  Google Scholar 

  34. Altin, J.G. & Pagler, E.B. A one-step procedure for biotinylation and chemical cross-linking of lymphocyte surface and intracellular membrane-associated molecules. Anal. Biochem. 224, 382– 389 (1995).

    Article  CAS  Google Scholar 

  35. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  36. Barber, D.F., Passoni, L., Wen, L., Geng, L. & Hayday, A.C. The expression in vivo of a second isoform of pTα: implications for the mechanism of pTα action. J. Immunol. 161, 11–16 ( 1998).

    CAS  PubMed  Google Scholar 

  37. O'Farrell, P.Z., Goodman, H.M. & O'Farrell, P.H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12, 1133–1142 (1977).

    Article  CAS  Google Scholar 

  38. Becker, M.L. et al. Expression of a hybrid immunoglobulin-T cell receptor protein in transgenic mice. Cell 58, 911– 921 (1989).

    Article  CAS  Google Scholar 

  39. Kubo, R.T., Born, W., Kappler, J.W., Marrack, P. & Pigeon, M. Characterization of a monoclonal antibody which detects all membrane alpha beta T cell receptors. J. Immunol. 142, 2336–2742 (1989).

    Google Scholar 

  40. Ioannides, C.G. et al. Identification of a second T cell antigen receptor in human and mouse by anti-peptide gamma chain-specific monoclonal antibody. Proc. Natl. Acad. Sci. USA 84, 4244– 4248 (1987).

    Article  CAS  Google Scholar 

  41. Chen, B.G. et al. Inhibition by CsA and FK506 of the in vitro proliferative response of gamma delta T cells on stimulation with anti-TCR delta monoclonal antibody. Transpl. Immunol. 4, 158– 162 (1996).

    Article  CAS  Google Scholar 

  42. Kosugi, A. et al. Subunit composition of the pre-T cell receptor complex analyzed by monoclonal antibody against the pre-T cell receptor α chain. J. Immunol. 91, 618–622 (1997).

    Article  CAS  Google Scholar 

  43. Groettrup, M., Baron, A., Griffiths, G., Palacios, R. & von Boehmer, H. T cell receptor (TCR) β chain homodimers on the surface of immature, but not mature α, γ and δ chain deficient T cell lines. EMBO J. 11, 2735– 2746 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Lakomy and the Pittsburgh Cancer Institute Flow Cytometry Facility for cell sorting support, as well as M. Mazzocchetti and the Animal Care Facility for animal care. We thank C.L. Kaufman and S.T. Ildstad for their support and R.L. Simmons for reviewing the manuscript. This study was supported in part by the American Society of Transplant Surgeons–Roche Surgical Scientist Scholarship, American College of Surgeons Resident Scholarship, Leukemia Society of America Special Fellow Award, and National Institutes of Health grant R29-AI4093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolonda L. Colson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuchert, M., Wright, R. & Colson, Y. Characterization of a newly discovered T-cell receptor β-chain heterodimer expressed on a CD8+ bone marrow subpopulation that promotes allogeneic stem cell engraftment. Nat Med 6, 904–909 (2000). https://doi.org/10.1038/78667

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78667

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing