Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of thymocyte development and recombination-activating gene expression by the zinc finger protein Zfp608

Abstract

The products of recombination-activating gene 1 (Rag1) and Rag2 are required for T cell receptor gene assembly and thymocyte maturation, yet their transcriptional control mechanisms remain unclear. A congenic strain (called 'ZORI' here) with defects in Rag1 and Rag2 expression, thymocyte maturation and peripheral T cell homeostasis has been developed. Here, we mapped the mutation in this strain to a chromosome 18 locus containing a single known gene encoding the zinc finger protein Zfp608. This gene (Zfp608) was highly expressed in neonatal thymus but was extinguished thereafter. In contrast to wild-type mice, ZORI mice had sustained thymocyte expression of Zfp608 throughout life. The ZORI mutation produced a thymocyte-intrinsic developmental defect. Overexpression of Zfp608 in BALB/c thymocytes substantially impaired Rag1 and Rag2 expression, indicating the underlying mechanism for the defect in ZORI thymocyte development. Thus, the normal function of Zfp608 may be to prevent Rag1 and Rag2 expression in utero.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wasting syndrome, premature mortality and T cell immunodeficiency in homozygous ZORI mice.
Figure 2: Thymocyte subpopulations in BALB/c and ZORI mice.
Figure 3: Overexpression of Zfp608 mRNA in ZORI thymus.
Figure 4: Expression of Notch1, Hes1, Jag1 and Jag2 by ZORI and BALB/c mice.
Figure 5: Reconstitution of bone marrow cells in lethally irradiated mice.
Figure 6: Zfp608 negatively regulates TCR recombination and Rag1 and Rag2 expression.
Figure 7: Thymic expression of Zfp608 mRNA is inversely correlated with thymocyte numbers during adolescence.

Similar content being viewed by others

References

  1. Godfrey, D.I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  PubMed  Google Scholar 

  2. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature 360, 225–231 (1992).

    Article  CAS  Google Scholar 

  3. Malissen, M. et al. T cell development in mice lacking the CD3-ζ/ε gene. EMBO J. 12, 4347–4355 (1993).

    Article  CAS  Google Scholar 

  4. Fehling, H.J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995).

    Article  CAS  Google Scholar 

  5. Malissen, M. et al. Regulation of TCR α and β gene allelic exclusion during T-cell development. Immunol. Today 13, 315–322 (1992).

    Article  CAS  Google Scholar 

  6. McBlane, J.F. et al. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83, 387–395 (1995).

    Article  CAS  Google Scholar 

  7. Schatz, D.G., Oettinger, M.A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    Article  CAS  Google Scholar 

  8. Wilson, A., Held, W. & MacDonald, H.R. Two waves of recombinase gene expression in developing thymocytes. J. Exp. Med. 179, 1355–1360 (1994).

    Article  CAS  Google Scholar 

  9. Taniguchi, M., Harada, M., Kojo, S., Nakayama, T. & Wakao, H. The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol. 21, 483–513 (2003).

    Article  CAS  Google Scholar 

  10. Chun, T. et al. CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of NKT cells. J. Exp. Med. 197, 907–918 (2003).

    Article  CAS  Google Scholar 

  11. Zhang, F. et al. A murine locus on chromosome 18 controls NKT cell homeostasis and Th cell differentiation. J. Immunol. 171, 4613–4620 (2003).

    Article  CAS  Google Scholar 

  12. Cipollina, C., Alberghina, L., Porro, D. & Vai, M. SFP1 is involved in cell size modulation in respiro-fermentative growth conditions. Yeast 22, 385–399 (2005).

    Article  CAS  Google Scholar 

  13. Fingerman, I., Nagaraj, V., Norris, D. & Vershon, A.K. Sfp1 plays a key role in yeast ribosome biogenesis. Eukaryot. Cell 2, 1061–1068 (2003).

    Article  CAS  Google Scholar 

  14. Jorgensen, P., Nishikawa, J.L., Breitkreutz, B.J. & Tyers, M. Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395–400 (2002).

    Article  CAS  Google Scholar 

  15. Marion, R.M. et al. Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc. Natl. Acad. Sci. USA 101, 14315–14322 (2004).

    Article  CAS  Google Scholar 

  16. Xu, Z. & Norris, D. The SFP1 gene product of Saccharomyces cerevisiae regulates G2/M transitions during the mitotic cell cycle and DNA-damage response. Genetics 150, 1419–1428 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Blumberg, H. & Silver, P. A split zinc-finger protein is required for normal yeast growth. Gene 107, 101–110 (1991).

    Article  CAS  Google Scholar 

  18. Deftos, M.L. & Bevan, M.J. Notch signaling in T cell development. Curr. Opin. Immunol. 12, 166–172 (2000).

    Article  CAS  Google Scholar 

  19. Deftos, M.L., He, Y.W., Ojala, E.W. & Bevan, M.J. Correlating notch signaling with thymocyte maturation. Immunity 9, 777–786 (1998).

    Article  CAS  Google Scholar 

  20. Hoebeke, I. et al. Overexpression of HES-1 is not sufficient to impose T-cell differentiation on human hematopoietic stem cells. Blood 107, 2879–2881 (2006).

    Article  CAS  Google Scholar 

  21. Kawamata, S., Du, C., Li, K. & Lavau, C. Overexpression of the Notch target genes Hes in vivo induces lymphoid and myeloid alterations. Oncogene 21, 3855–3863 (2002).

    Article  CAS  Google Scholar 

  22. Agrawal, A., Eastman, Q.M. & Schatz, D.G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998).

    Article  CAS  Google Scholar 

  23. Hiom, K., Melek, M. & Gellert, M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94, 463–470 (1998).

    Article  CAS  Google Scholar 

  24. Zarrin, A.A., Fong, I., Malkin, L., Marsden, P.A. & Berinstein, N.L. Cloning and characterization of the human recombination activating gene 1 (RAG1) and RAG2 promoter regions. J. Immunol. 159, 4382–4394 (1997).

    CAS  PubMed  Google Scholar 

  25. Kurioka, H. et al. Isolation and characterization of a TATA-less promoter for the human RAG-1 gene. Mol. Immunol. 33, 1059–1066 (1996).

    Article  CAS  Google Scholar 

  26. Fuller, K. & Storb, U. Identification and characterization of the murine Rag1 promoter. Mol. Immunol. 34, 939–954 (1997).

    Article  CAS  Google Scholar 

  27. Lauring, J. & Schlissel, M.S. Distinct factors regulate the murine Rag-2 promoter in B- and T-cell lines. Mol. Cell. Biol. 19, 2601–2612 (1999).

    Article  CAS  Google Scholar 

  28. Kishi, H. et al. Cooperative binding of c-Myb and Pax-5 activates the Rag-2 promoter in immature B cells. Blood 99, 576–583 (2002).

    Article  CAS  Google Scholar 

  29. Kishi, H. et al. Lineage-specific regulation of the murine Rag-2 promoter: GATA-3 in T cells and Pax-5 in B cells. Blood 95, 3845–3852 (2000).

    CAS  PubMed  Google Scholar 

  30. Jin, Z.X. et al. Lymphoid enhancer-binding factor-1 binds and activates the recombination-activating gene-2 promoter together with c-Myb and Pax-5 in immature B cells. J. Immunol. 169, 3783–3792 (2002).

    Article  CAS  Google Scholar 

  31. Brown, S.T. et al. Regulation of the RAG-1 promoter by the NF-Y transcription factor. J. Immunol. 158, 5071–5074 (1997).

    CAS  PubMed  Google Scholar 

  32. Fong, I.C., Zarrin, A.A., Wu, G.E. & Berinstein, N.L. Functional analysis of the human RAG 2 promoter. Mol. Immunol. 37, 391–402 (2000).

    Article  CAS  Google Scholar 

  33. Wang, Q.F., Lauring, J. & Schlissel, M.S. c-Myb binds to a sequence in the proximal region of the Rag-2 promoter and is essential for promoter activity in T-lineage cells. Mol. Cell. Biol. 20, 9203–9211 (2000).

    Article  CAS  Google Scholar 

  34. Hsu, L.Y. et al. A conserved transcriptional enhancer regulates RAG gene expression in developing B cells. Immunity 19, 105–117 (2003).

    Article  CAS  Google Scholar 

  35. Yu, W. et al. Coordinate regulation of RAG1 and RAG2 by cell type-specific DNA elements 5′ of RAG2. Science 285, 1080–1084 (1999).

    Article  CAS  Google Scholar 

  36. Monroe, R.J., Chen, F., Ferrini, R., Davidson, L. & Alt, F.W. RAG2 is regulated differentially in B and T cells by elements 5′ of the promoter. Proc. Natl. Acad. Sci. USA 96, 12713–12718 (1999).

    Article  CAS  Google Scholar 

  37. Wei, X.C. et al. Characterization of chromatin structure and enhancer elements for murine recombination activating gene-2. J. Immunol. 169, 873–881 (2002).

    Article  CAS  Google Scholar 

  38. Dudley, E.C., Petrie, H.T., Shah, L.M., Owen, M.J. & Hayday, A.C. T cell receptor beta chain gene rearrangement and selection during thymocyte development in adult mice. Immunity 1, 83–93 (1994).

    Article  CAS  Google Scholar 

  39. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  Google Scholar 

  40. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  Google Scholar 

  41. Piguet, P.F., Irle, C., Kollatte, E. & Vassalli, P. Post-thymic T lymphocyte maturation during ontogenesis. J. Exp. Med. 154, 581–593 (1981).

    Article  CAS  Google Scholar 

  42. Spear, P.G., Wang, A.L., Rutishauser, U. & Edelman, G.M. Characterization of splenic lymphoid cells in fetal and newborn mice. J. Exp. Med. 138, 557–573 (1973).

    Article  CAS  Google Scholar 

  43. Spear, P.G. & Edelman, G.M. Maturation of the humoral immune response in mice. J. Exp. Med. 139, 249–263 (1974).

    Article  CAS  Google Scholar 

  44. Amagai, T., Itoi, M. & Kondo, Y. Limited development capacity of the earliest embryonic murine thymus. Eur. J. Immunol. 25, 757–762 (1995).

    Article  CAS  Google Scholar 

  45. Schlissel, M.S., Corcoran, L.M. & Baltimore, D. Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription. J. Exp. Med. 173, 711–720 (1991).

    Article  CAS  Google Scholar 

  46. Whitehurst, C.E., Chattopadhyay, S. & Chen, J. Control of V(D)J recombinational accessibility of the Dβ1 gene segment at the TCRβ locus by a germline promoter. Immunity 10, 313–322 (1999).

    Article  CAS  Google Scholar 

  47. Goldman, J.P., Spencer, D.M. & Raulet, D.H. Ordered rearrangement of variable region genes of the T cell receptor γ locus correlates with transcription of the unrearranged genes. J. Exp. Med. 177, 729–739 (1993).

    Article  CAS  Google Scholar 

  48. Capone, M., Hockett, R.D., Jr. & Zlotnik, A. Kinetics of T cell receptor β, γ, and δ rearrangements during adult thymic development: T cell receptor rearrangements are present in CD44+CD25+ pro-T thymocytes. Proc. Natl. Acad. Sci. USA 95, 12522–12527 (1998).

    Article  CAS  Google Scholar 

  49. Sikes, M.L., Gomez, R.J., Song, J. & Oltz, E.M. A developmental stage-specific promoter directs germline transcription of Dβ Jβ gene segments in precursor T lymphocytes. J. Immunol. 161, 1399–1405 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.W. Thomas and L. Van Kaer for comments and review of the manuscript, and J. Sligh for comments and assistance with the temperature-gradient capillary electrophoresis technique; M. Boothby (Vanderbilt University) provided OTII OVA-specific TCR-transgenic mice. Supported by the US National Institutes of Health (5 T32 DK07563 to F.Z., AI 44924 to T.M.A., P01 HL68744 and CA100905 to E.M.O., and F32 AI066691 and 5T32 HL069765 to L.R.T.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussions, experimental design, data analysis and preparation of the manuscript; F.Z. designed and executed experiments and prepared the manuscript; L.R.T. examined TCR rearrangement and helped to analyze data and to write the manuscript; and T.M.A. and E.M.O. supervised the work and assisted in data analysis and composition of the manuscript.

Corresponding author

Correspondence to Thomas M Aune.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

T cell development defects in the ZORI stain map to a locus between 54.3 Mb (D18mit150) and 55.8 Mb (D18mit218) on chromosome 18. (PDF 307 kb)

Supplementary Fig. 2

Relative expression of genes adjacent to Zfp608 on chromosome 18. (PDF 260 kb)

Supplementary Note 1

MapPair primer sequences and primer sequences for TCR rearrangements. (PDF 7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Thomas, L., Oltz, E. et al. Control of thymocyte development and recombination-activating gene expression by the zinc finger protein Zfp608. Nat Immunol 7, 1309–1316 (2006). https://doi.org/10.1038/ni1397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing