Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selection of the cutaneous intraepithelial γδ+ T cell repertoire by a thymic stromal determinant

Abstract

Intraepithelial lymphocytes constitute a group of T cells that express mainly monospecific or oligoclonal T cell receptors (TCRs). Like adaptive TCRαβ+ T cells, intraepithelial lymphocytes, a subset enriched in TCRγδ+ T cells, are proposed to be positively selected by thymically expressed self agonists, yet no direct evidence for this exists at present. Mouse dendritic epidermal T cells are prototypic intraepithelial lymphocytes, displaying an almost monoclonal TCRγδ+ repertoire. Here we describe an FVB substrain of mice in which this repertoire was uniquely depleted, resulting in cutaneous pathology. This phenotype was due to failure of dendritic epidermal T cell progenitors to mature because of a heritable defect in a dominant gene used by the thymic stroma to 'educate' the natural, skin-associated intraepithelial lymphocyte repertoire to be of physiological use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DETCs of FVB-Tac mice have an altered TCRγδ repertoire.
Figure 2: The altered DETC repertoire in FVB-Tac mice has functional consequences.
Figure 3: DETC precursors in FVB-Tac fetal thymus have defective maturation.
Figure 4: Chemokine receptor expression is altered in E16 FVB-Tac Vγ5+ thymocytes.
Figure 5: The defect in the FVB-Tac fetal thymus is confined to thymic stromal cells.
Figure 6: TCR ligation mimics normal fetal thymic stromal cells in allowing the maturation of FVB-Tac Vγ5+Vδ1+ fetal thymocytes.
Figure 7: Segregation of the DETC phenotype in FVB-Jax × FVB-Tac F1 and F1 × FVB-Tac backcrossed mice is consistent with control by a single autosomal dominant gene.

Similar content being viewed by others

References

  1. Hayday, A., Theodoridis, E., Ramsburg, E. & Shires, J. Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat. Immunol. 2, 997–1003 (2001).

    Article  CAS  Google Scholar 

  2. Born, W. et al. Immunoregulatory functions of γδ T cells. Adv. Immunol. 71, 77–144 (1999).

    Article  CAS  Google Scholar 

  3. Hayday, A. & Tigelaar, R. Immunoregulation in the tissues by γδ T cells. Nat. Rev. Immunol. 3, 233–242 (2003).

    Article  CAS  Google Scholar 

  4. Rocha, B., Guy-Grand, D. & Vassalli, P. Extrathymic T cell differentiation. Curr. Opin. Immunol. 7, 235–242 (1995).

    Article  CAS  Google Scholar 

  5. Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    Article  CAS  Google Scholar 

  6. Lambolez, F. et al. The thymus exports long-lived fully committed T cell precursors that can colonize primary lymphoid organs. Nat. Immunol. 7, 76–82 (2006).

    Article  CAS  Google Scholar 

  7. Asarnow, D.M. et al. Limited diversity of γδ antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 55, 837–847 (1988).

    Article  CAS  Google Scholar 

  8. Mallick-Wood, C.A. et al. Conservation of T cell receptor conformation in epidermal γδ cells with disrupted primary Vγ gene usage. Science 279, 1729–1733 (1998).

    Article  CAS  Google Scholar 

  9. Janeway, C.A., Jr., Jones, B. & Hayday, A. Specificity and function of T cells bearing γδ receptors. Immunol. Today 9, 73–76 (1988).

    Article  Google Scholar 

  10. Leishman, A.J. et al. Precursors of functional MHC class I- or class II-restricted CD8αα+ T cells are positively selected in the thymus by agonist self-peptides. Immunity 16, 355–364 (2002).

    Article  CAS  Google Scholar 

  11. Yamagata, T., Mathis, D. & Benoist, C. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. Nat. Immunol. 5, 597–605 (2004).

    Article  CAS  Google Scholar 

  12. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    Article  CAS  Google Scholar 

  13. Asarnow, D.M., Cado, D. & Raulet, D.H. Selection is not required to produce invariant T-cell receptor γ-gene junctional sequences. Nature 362, 158–160 (1993).

    Article  CAS  Google Scholar 

  14. Itohara, S. et al. T cell receptor δ gene mutant mice: independent generation of αβ T cells and programmed rearrangements of γδ TCR genes. Cell 72, 337–348 (1993).

    Article  CAS  Google Scholar 

  15. Kyes, S., Pao, W. & Hayday, A. Influence of site of expression on the fetal γδ T-cell receptor repertoire. Proc. Natl. Acad. Sci. USA 88, 7830–7833 (1991).

    Article  CAS  Google Scholar 

  16. Passoni, L. et al. Intrathymic delta selection events in γδ cell development. Immunity 7, 83–95 (1997).

    Article  CAS  Google Scholar 

  17. Ferrero, I., Wilson, A., Beermann, F., Held, W. & MacDonald, H.R. T cell receptor specificity is critical for the development of epidermal γδ T cells. J. Exp. Med. 194, 1473–1483 (2001).

    Article  CAS  Google Scholar 

  18. Xiong, N., Kang, C. & Raulet, D.H. Positive selection of dendritic epidermal γδ T cell precursors in the fetal thymus determines expression of skin-homing receptors. Immunity 21, 121–131 (2004).

    Article  CAS  Google Scholar 

  19. Tigelaar, R.E. & Lewis, J.M. Immunobiology of mouse dendritic epidermal T cells: a decade later, some answers, but still more questions. J. Invest. Dermatol. 105, 43S–49S (1995).

    Article  CAS  Google Scholar 

  20. Hara, H. et al. Development of dendritic epidermal T cells with a skewed diversity of γδ TCRs in Vδ1-deficient mice. J. Immunol. 165, 3695–3705 (2000).

    Article  CAS  Google Scholar 

  21. Moore, T.A., von Freeden-Jeffry, U., Murray, R. & Zlotnik, A. Inhibition of γδ T cell development and early thymocyte maturation in IL-7−/− mice. J. Immunol. 157, 2366–2373 (1996).

    CAS  PubMed  Google Scholar 

  22. De Creus, A. et al. Developmental and functional defects of thymic and epidermal Vγ3 cells in IL-15-deficient and IFN regulatory factor-1-deficient mice. J. Immunol. 168, 6486–6493 (2002).

    Article  CAS  Google Scholar 

  23. Girardi, M. et al. The distinct contributions of murine T cell receptor (TCR)γδ+ and TCRαβ+ T cells to different stages of chemically induced skin cancer. J. Exp. Med. 198, 747–755 (2003).

    Article  CAS  Google Scholar 

  24. Girardi, M. et al. Resident skin-specific γδ T cells provide local, nonredundant regulation of cutaneous inflammation. J. Exp. Med. 195, 855–867 (2002).

    Article  CAS  Google Scholar 

  25. Girardi, M., Lewis, J.M., Filler, R.B., Hayday, A.C. & Tigelaar, R.E. Environmentally responsive and reversible regulation of epidermal barrier function by γδ T cells. J. Invest. Dermatol. 126, 808–814 (2006).

    Article  CAS  Google Scholar 

  26. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  Google Scholar 

  27. Dandekar, A.A., O'Malley, K. & Perlman, S. Important roles for γ interferon and NKG2D in γδ T-cell-induced demyelination in T-cell receptor β-deficient mice infected with a coronavirus. J. Virol. 79, 9388–9396 (2005).

    Article  CAS  Google Scholar 

  28. Nitahara, A. et al. NKG2D ligation without T cell receptor engagement triggers both cytotoxicity and cytokine production in dendritic epidermal T cells. J. Invest. Dermatol. 126, 1052–1058 (2006).

    Article  CAS  Google Scholar 

  29. Havran, W.L. & Allison, J.P. Origin of Thy-1+ dendritic epidermal cells of adult mice from fetal thymic precursors. Nature 344, 68–70 (1990).

    Article  CAS  Google Scholar 

  30. Payer, E., Elbe, A. & Stingl, G. Circulating CD3+ T cell receptor Vγ3+ fetal murine thymocytes home to the skin and give rise to proliferating dendritic epidermal T cells. J. Immunol. 146, 2536–2543 (1991).

    CAS  PubMed  Google Scholar 

  31. Ikuta, K. et al. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62, 863–874 (1990).

    Article  CAS  Google Scholar 

  32. Leclercq, G., Plum, J., Nandi, D., De Smedt, M. & Allison, J.P. Intrathymic differentiation of Vγ3 T cells. J. Exp. Med. 178, 309–315 (1993).

    Article  CAS  Google Scholar 

  33. Tatsumi, Y., Pena, J.C., Matis, L., Deluca, D. & Bluestone, J.A. Development of T cell receptor-γδ cells. Phenotypic and functional correlations of T cell receptor-γδ thymocyte maturation. J. Immunol. 151, 3030–3041 (1993).

    CAS  PubMed  Google Scholar 

  34. Van Beneden, K. et al. Expression of inhibitory receptors Ly49E and CD94/NKG2 on fetal thymic and adult epidermal TCR Vγ3 lymphocytes. J. Immunol. 168, 3295–3302 (2002).

    Article  CAS  Google Scholar 

  35. Girardi, M. & Hayday, A.C. Immunosurveillance by γδ T cells: focus on the murine system. Chem. Immunol. Allergy 86, 136–150 (2005).

    Article  CAS  Google Scholar 

  36. Kabelitz, D., Marischen, L., Oberg, H.H., Holtmeier, W. & Wesch, D. Epithelial defence by γδ T cells. Int. Arch. Allergy Immunol. 137, 73–81 (2005).

    Article  CAS  Google Scholar 

  37. Kronenberg, M. & Rudensky, A. Regulation of immunity by self-reactive T cells. Nature 435, 598–604 (2005).

    Article  CAS  Google Scholar 

  38. Wang, H. & Clarke, S.H. Positive selection focuses the VH12 B-cell repertoire towards a single B1 specificity with survival function. Immunol. Rev. 197, 51–59 (2004).

    Article  CAS  Google Scholar 

  39. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Identification of a B-1 B cell–specified progenitor. Nat. Immunol. 7, 293–301 (2006).

    Article  CAS  Google Scholar 

  40. Baumgarth, N., Tung, J.W. & Herzenberg, L.A. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol. 26, 347–362 (2005).

    Article  CAS  Google Scholar 

  41. Parker, W. et al. Specificity and function of 'natural' antibodies in immunodeficient subjects: clues to B cell lineage and development. J. Clin. Immunol. 17, 311–321 (1997).

    Article  CAS  Google Scholar 

  42. Paloczi, K., Batai, A., Gopcsa, L., Ezsi, R. & Petranyi, G.G. Immunophenotypic characterisation of cord blood B-lymphocytes. Bone Marrow Transplant. 4, S89–S91 (1998).

    Google Scholar 

  43. Pereira, P., Gerber, D., Huang, S.Y. & Tonegawa, S. Ontogenic development and tissue distribution of Vγ1-expressing γδ T lymphocytes in normal mice. J. Exp. Med. 182, 1921–1930 (1995).

    Article  CAS  Google Scholar 

  44. Goodman, T., LeCorre, R. & Lefrancois, L. A T-cell receptor γδ-specific monoclonal antibody detects a Vγ5 region polymorphism. Immunogenetics 35, 65–68 (1992).

    Article  CAS  Google Scholar 

  45. Roark, C.L. et al. Subset-specific, uniform activation among Vγ6,Vδ1+ γδ T cells elicited by inflammation. J. Leukoc. Biol. 75, 68–75 (2004).

    Article  CAS  Google Scholar 

  46. Itohara, S. et al. Homing of a γδ thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 343, 754–757 (1990).

    Article  CAS  Google Scholar 

  47. Findly, R.C., Roberts, S.J. & Hayday, A.C. Dynamic response of murine gut intraepithelial T cells after infection by the coccidian parasite Eimeria. Eur. J. Immunol. 23, 2557–2564 (1993).

    Article  CAS  Google Scholar 

  48. Jenkinson, E.J. & Owen, J.J. T-cell differentiation in thymus organ cultures. Semin. Immunol. 2, 51–58 (1990).

    CAS  PubMed  Google Scholar 

  49. Jenkinson, E.J., Anderson, G. & Owen, J.J. Studies on T cell maturation on defined thymic stromal cell populations in vitro. J. Exp. Med. 176, 845–853 (1992).

    Article  CAS  Google Scholar 

  50. Goldman, J.P., Spencer, D.M. & Raulet, D.H. Ordered rearrangement of variable region genes of the T cell receptor γ locus correlates with transcription of the unrearranged genes. J. Exp. Med. 177, 729–739 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Bas, J.-J. Mention, R. Filler D. Pennington, B. Silva-Santos and E. Theodoridis for discussions. Supported by the National Institutes of Health (R01-A.R49282 and P30-AR041942 to R.E.T.) and Wellcome Trust (A.C.H. and S.D.B).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussions of experimental design, data analysis and manuscript preparation; J.M.L. did all experimental studies unless otherwise indicated; S.R. prepared and analyzed gut IEL suspensions; S.D.B. purified, cloned and sequenced skin and uterine DNA; and R.E.T. did the semiquantitative analyses of fetal thymocyte chemokine receptor cDNA.

Corresponding author

Correspondence to Robert E Tigelaar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The majority of DETC in 'normal' mouse strains utilize Vγ5,Vδ1. (PDF 56 kb)

Supplementary Fig. 2

DETC repertoires in adult FVB-Jax and FVB-Tac mice. (PDF 307 kb)

Supplementary Fig. 3

Fetal thymocyte yields from E15-E17 FVB-Jax and FVB-Tac mice. (PDF 57 kb)

Supplementary Fig. 4

Increased apoptosis among Vγ5+ FVB-Tac fetal thymocytes. (PDF 129 kb)

Supplementary Fig. 5

FVB-Jax and FVB-Tac have equivalent maturation of Vδ1+ and Vδ4+ fetal thymocytes. (PDF 2207 kb)

Supplementary Fig. 6

Defect in Vγ5,Vδ1+ fetal thymocyte maturation in FVB-Tac is maintained in vitro. (PDF 62 kb)

Supplementary Table 1

Sequence analysis of uterine TCR Vγ6-Jγ1 and Vδ1-Jδ2 gene rearrangements. (PDF 43 kb)

Supplementary Table 2

Primers and PCR conditions used in chemokine gene expression analysis. (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, J., Girardi, M., Roberts, S. et al. Selection of the cutaneous intraepithelial γδ+ T cell repertoire by a thymic stromal determinant. Nat Immunol 7, 843–850 (2006). https://doi.org/10.1038/ni1363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1363

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing