Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adaptor protein 3–dependent microtubule-mediated movement of lytic granules to the immunological synapse

Abstract

Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disease characterized by platelet defects and oculocutaneous albinism. Individuals with HPS type 2 (HPS2) lack the cytosolic adaptor protein 3 (AP-3) involved in lysosomal sorting, and are also immunodeficient. Here we characterize an HPS2 mutation and demonstrate that AP-3 deficiency leads to a loss of cytotoxic T lymphocyte (CTL)-mediated cytotoxicity. Although the lysosomal protein CD63 was mislocalized to the plasma membrane, perforin and granzymes were correctly localized to the lytic granules in AP-3-deficient CTLs. However, the lytic granules of AP-3-deficient CTLs were enlarged and were unable to move along microtubules and dock within the secretory domain of the immunological synapse. These data show that AP-3 is essential for polarized secretion from CTLs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The AP-3 complex is unstable in HPS2 CTLs.
Figure 2: Identification of the mutations giving rise to HPS2.
Figure 3: CD63 is mis-sorted in AP-3-deficient CTLs.
Figure 4: AP-3-deficient CTLs show a reduced ability to kill or to secrete.
Figure 5: Lytic proteins are correctly localized in AP-3-deficient CTLs.
Figure 6: The lytic granules of AP-3 deficient CTLs are enlarged and show an abnormal distribution in the cell.
Figure 7: Lytic granules from AP-3-deficient CTLs do not polarize properly at the immunological synapse.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kupfer, A., Dennert, G. & Singer, S.J. The reorientation of the Golgi apparatus and the microtubule-organizing center in the cytotoxic effector cell is a prerequisite in the lysis of bound target cells. J. Mol. Cell. Immunol. 2, 37–49 (1985).

    CAS  PubMed  Google Scholar 

  2. Kuhn, J.R. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 16, 111–121 (2002).

    Article  CAS  Google Scholar 

  3. Bossi, G. et al. The secretory synapse: the secrets of a serial killer. Immunol. Rev. 189, 152–160 (2002).

    Article  CAS  Google Scholar 

  4. Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    Article  CAS  Google Scholar 

  5. Menasche, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat. Genet. 25, 173–176 (2000).

    Article  CAS  Google Scholar 

  6. Stinchcombe, J.C. et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J. Cell Biol. 152, 825–834 (2001).

    Article  CAS  Google Scholar 

  7. Haddad, E.K., Wu, X., Hammer, J.A., 3rd & Henkart, P.A. Defective granule exocytosis in Rab27a-deficient lymphocytes from Ashen mice. J. Cell Biol. 152, 835–842 (2001).

    Article  CAS  Google Scholar 

  8. Ward, D.M., Griffiths, G.M., Stinchcombe, J.C. & Kaplan, J. Analysis of the lysosomal storage disease Chediak-Higashi syndrome. Traffic 1, 816–822 (2000).

    Article  CAS  Google Scholar 

  9. Stinchcombe, J.C., Page, L.J. & Griffiths, G.M. Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak Higashi syndrome patients. Traffic 1, 435–444 (2000).

    Article  CAS  Google Scholar 

  10. Huizing, M., Anikster, Y. & Gahl, W.A. Hermansky-Pudlak syndrome and Chediak-Higashi syndrome: disorders of vesicle formation and trafficking. Thromb. Haemost. 86, 233–245 (2001).

    Article  CAS  Google Scholar 

  11. Dell'Angelica, E.C., Shotelersuk, V., Aguilar, R.C., Gahl, W.A. & Bonifacino, J.S. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the β3A subunit of the AP-3 adaptor. Mol. Cell 3, 11–21 (1999).

    Article  CAS  Google Scholar 

  12. Huizing, M. et al. Nonsense mutations in ADTB3A cause complete deficiency of the β3A subunit of adaptor complex-3 and severe Hermansky-Pudlak syndrome type 2. Pediatr. Res. 51, 150–158 (2002).

    Article  CAS  Google Scholar 

  13. Sugita, M. et al. Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity 16, 697–706 (2002).

    Article  CAS  Google Scholar 

  14. Honing, S., Sandoval, I.V. & von Figura, K. A di-leucine-based motif in the cytoplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3. EMBO J. 17, 1304–1314 (1998).

    Article  CAS  Google Scholar 

  15. Huizing, M. et al. AP-3 mediates tyrosinase but not TRP-1 trafficking in human melanocytes. Mol. Biol. Cell 12, 2075–2085 (2001).

    Article  CAS  Google Scholar 

  16. Peden, A.A., Rudge, R.E., Lui, W.W. & Robinson, M.S. Assembly and function of AP-3 complexes in cells expressing mutant subunits. J. Cell Biol. 156, 327–336 (2002).

    Article  CAS  Google Scholar 

  17. Simpson, F., Peden, A.A., Christopoulou, L. & Robinson, M.S. Characterization of the adaptor-related protein complex, AP-3. J. Cell Biol. 137, 835–845 (1997).

    Article  CAS  Google Scholar 

  18. Rous, B.A. et al. Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes. Mol. Biol. Cell 13, 1071–1082 (2002).

    Article  CAS  Google Scholar 

  19. Griffiths, G.M. & Isaaz, S. Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J. Cell Biol. 120, 885–896 (1993).

    Article  CAS  Google Scholar 

  20. Burkhardt, J.K., Hester, S. & Argon, Y. Two proteins targeted to the same lytic granule compartment undergo very different posttranslational processing. Proc. Natl. Acad. Sci. USA 86, 7128–7132 (1989).

    Article  CAS  Google Scholar 

  21. Uellner, R. et al. Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J. 16, 7287–7296 (1997).

    Article  CAS  Google Scholar 

  22. Burkhardt, J.K., McIlvain, J.M., Jr., Sheetz, M.P. & Argon, Y. Lytic granules from cytotoxic T cells exhibit kinesin-dependent motility on microtubules in vitro. J. Cell Sci. 104, 151–162 (1993).

    CAS  PubMed  Google Scholar 

  23. Starcevic, M., Nazarian, R. & Dell'Angelica, E.C. The molecular machinery for the biogenesis of lysosome-related organelles: lessons from Hermansky-Pudlak syndrome. Semin. Cell Dev. Biol. 13, 271–278 (2002).

    Article  CAS  Google Scholar 

  24. Swank, R.T., Novak, E.K., McGarry, M.P., Rusiniak, M.E. & Feng, L. Mouse models of Hermansky Pudlak syndrome: a review. Pigment Cell Res. 11, 60–80 (1998).

    Article  CAS  Google Scholar 

  25. Zhang, Q. et al. Ru2 and Ru encode mouse orthologs of the genes mutated in human Hermansky-Pudlak syndrome types 5 and 6. Nat. Genet. 33, 145–153 (2003).

    Article  CAS  Google Scholar 

  26. Anderson, P.D., Huizing, M., Claassen, D.A., White, J. & Gahl, W.A. Hermansky-Pudlak syndrome type 4 (HPS-4): clinical and molecular characteristics. Hum. Genet. 113, 10–17 (2003).

    CAS  PubMed  Google Scholar 

  27. Chiang, P.W., Oiso, N., Gautam, R., Swank, R.T. & Spritz, R.A. The Hermansky-Pudlak syndrome 1 (HPS1) and HPS4 proteins are components of two complexes, BLOC-3 and BLOC-4, involved in the biogenesis of lysosome-related organelles. J. Biol. Chem. 278, 20332–20337 (2003).

    Article  CAS  Google Scholar 

  28. Ciciotte, S.L. et al. Cappuccino, a mouse model of Hermansky-Pudlak syndrome, encodes a novel protein that is part of the pallidin-muted complex (BLOC-1). Blood 101, 4402–4407 (2003).

    Article  CAS  Google Scholar 

  29. Li, W. et al. Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat. Genet. 35, 84–89 (2003).

    Article  CAS  Google Scholar 

  30. Huizing, M., Boissy, R.E. & Gahl, W.A. Hermansky-Pudlak syndrome: vesicle formation from yeast to man. Pigment Cell Res. 15, 405–419 (2002).

    Article  CAS  Google Scholar 

  31. Lesser, C.F. & Guthrie, C. Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science 262, 1982–1988 (1993).

    Article  CAS  Google Scholar 

  32. Madhani, H.D. & Guthrie, C. Randomization-selection analysis of snRNAs in vivo: evidence for a tertiary interaction in the spliceosome. Genes Dev. 8, 1071–1086 (1994).

    Article  CAS  Google Scholar 

  33. Le Borgne, R., Alconada, A., Bauer, U. & Hoflack, B. The mammalian AP-3 adaptor-like complex mediates the intracellular transport of lysosomal membrane glycoproteins. J. Biol. Chem. 273, 29451–29461 (1998).

    Article  CAS  Google Scholar 

  34. Novak, E.K. & Swank, R.T. Lysosomal dysfunctions associated with mutations at mouse pigment genes. Genetics 92, 189–204 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhen, L. et al. Abnormal expression and subcellular distribution of subunit proteins of the AP-3 adaptor complex lead to platelet storage pool deficiency in the pearl mouse. Blood 94, 146–155 (1999).

    CAS  PubMed  Google Scholar 

  36. Faundez, V.V. & Kelly, R.B. The AP-3 complex required for endosomal synaptic vesicle biogenesis is associated with a casein kinase Iα-like isoform. Mol. Biol. Cell 11, 2591–2604 (2000).

    Article  CAS  Google Scholar 

  37. Lyubchenko, T.A., Wurth, G.A. & Zweifach, A. Role of calcium influx in cytotoxic T lymphocyte lytic granule exocytosis during target cell killing. Immunity 15, 847–859 (2001).

    Article  CAS  Google Scholar 

  38. Yang, W., Li, C., Ward, D.M., Kaplan, J. & Mansour, S.L. Defective organellar membrane protein trafficking in Ap3b1-deficient cells. J. Cell Sci. 113, 4077–4086 (2000).

    CAS  PubMed  Google Scholar 

  39. Nakagawa, T. et al. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103, 569–581 (2000).

    Article  CAS  Google Scholar 

  40. Baetz, K., Isaaz, S. & Griffiths, G.M. Loss of cytotoxic T lymphocyte function in Chediak-Higashi syndrome arises from a secretory defect that prevents lytic granule exocytosis. J. Immunol. 154, 6122–6131 (1995).

    CAS  PubMed  Google Scholar 

  41. Ooi, C.E. et al. Altered expression of a novel adaptin leads to defective pigment granule biogenesis in the Drosophila eye color mutant garnet. Embo J. 16, 4508–4518 (1997).

    Article  CAS  Google Scholar 

  42. Dell'Angelica, E.C., Ooi, C.E. & Bonifacino, J.S. β3A-adaptin, a subunit of the adaptor-like complex AP-3. J. Biol. Chem. 272, 15078–15084 (1997).

    Article  CAS  Google Scholar 

  43. Dell'Angelica, E.C. et al. AP-3: an adaptor-like protein complex with ubiquitous expression. Embo J. 16, 917–928 (1997).

    Article  CAS  Google Scholar 

  44. Takayama, H., Trenn, G. & Sitkovsky, M.V. A novel cytotoxic T lymphocyte activation assay. Optimized conditions for antigen receptor triggered granule enzyme secretion. J. Immunol. Meth. 104, 183–190 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Kaufman, F. Gallo and N. Barclay for critical reading of the manuscript, and P. Klenerman and his laboratory for providing some reagents. We also thank the individual who made this study possible. Supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian M Griffiths.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1.

Wild-type CTL without target. 3D reconstruction of Fig 7c. (GIF 1061 kb)

Supplementary Video 2.

Wild-type CTL with target. 3D reconstruction of Fig 7d. (GIF 572 kb)

Supplementary Video 3.

AP-3-/- CTL without target. 3D reconstruction of Fig 7e. (GIF 958 kb)

Supplementary Video 4.

AP-3 -/- CTL with target. 3D reconstruction of Fig 7f. (GIF 450 kb)

Supplementary Video 5.

Lytic granule movement in wild-type CTL. (GIF 2007 kb)

Supplementary Video 6.

Lytic granule movement in AP-3 deficient CTL. (GIF 3078 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, R., Stinchcombe, J., Day, A. et al. Adaptor protein 3–dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nat Immunol 4, 1111–1120 (2003). https://doi.org/10.1038/ni1000

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing