Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Commensal bacteria at the interface of host metabolism and the immune system

Abstract

The mammalian gastrointestinal tract, the site of digestion and nutrient absorption, harbors trillions of beneficial commensal microbes from all three domains of life. Commensal bacteria, in particular, are key participants in the digestion of food, and are responsible for the extraction and synthesis of nutrients and other metabolites that are essential for the maintenance of mammalian health. Many of these nutrients and metabolites derived from commensal bacteria have been implicated in the development, homeostasis and function of the immune system, suggesting that commensal bacteria may influence host immunity via nutrient- and metabolite-dependent mechanisms. Here we review the current knowledge of how commensal bacteria regulate the production and bioavailability of immunomodulatory, diet-dependent nutrients and metabolites and discuss how these commensal bacteria–derived products may regulate the development and function of the mammalian immune system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Commensal bacteria at the interface of host metabolism and immunity.
Figure 2: Regulation of bile acid metabolism by commensal bacteria and effects of bile acids on immune cells.
Figure 3: Synthesis of SCFAs by commensal bacteria, and regulation of immunity by SCFAs.

References

  1. 1

    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  2. 2

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Semova, I. et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12, 277–288 (2012).

    CAS  Google Scholar 

  4. 4

    Shin, S.C. et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334, 670–674 (2011).

    CAS  PubMed  Google Scholar 

  5. 5

    Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101, 15718–15723 (2004).

    PubMed  Google Scholar 

  6. 6

    Ley, R.E., Turnbaugh, P.J., Klein, S. & Gordon, J.I. Microbial ecology: human gut microbes linked to obesity. Nature 444, 1022–1023 (2006).

    CAS  PubMed  Google Scholar 

  7. 7

    Bäckhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A. & Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    PubMed  Google Scholar 

  8. 8

    Hooper, L.V., Midtvedt, T. & Gordon, J.I. Host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283–307 (2002).

    CAS  PubMed  Google Scholar 

  9. 9

    Flint, H.J., Scott, K.P., Louis, P. & Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).

    CAS  PubMed  Google Scholar 

  10. 10

    Kau, A.L., Ahern, P.P., Griffin, N.W., Goodman, A.L. & Gordon, J.I. Human nutrition, the gut microbiome and immune system. Nature 474, 327–336 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Musso, G., Gambino, R. & Cassader, M. Interactions between gut microbiota and host metabolism predisposing to obesity. Annu. Rev. Med. 62, 361–380 (2011).

    CAS  PubMed  Google Scholar 

  12. 12

    Nicholson, J.K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    CAS  Google Scholar 

  13. 13

    Holmes, E., Li, J.V., Athanasiou, T., Ashrafian, H. & Nicholson, J.K. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol. 19, 349–359 (2011).

    CAS  PubMed  Google Scholar 

  14. 14

    Tremaroli, V. & Bächked, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).

    CAS  PubMed  Google Scholar 

  15. 15

    Hill, D.A. & Artis, D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. 28, 623–667 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Round, J.L. & Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Littman, D.R. & Pamer, E.G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10, 311–323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Chinen, T. & Rudensky, A.Y. The effects of commensal microbiota on immune cell subsets and inflammatory responses. Immunol. Rev. 245, 45–55 (2012).

    CAS  PubMed  Google Scholar 

  19. 19

    Honda, K. & Littman, D.R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30, 759–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Hooper, L.V., Littman, D.R. & Macpherson, A.J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Molloy, M.J., Bouladoux, N. & Belkaid, Y. Intestinal microbiota: shaping local and systemic immune responses. Semin. Immunol. 24, 58–66 (2012).

    CAS  PubMed  Google Scholar 

  22. 22

    Abt, M.C. & Artis, D. The dynamic influence of commensal bacteria on the immune response to pathogens. Curr. Opin. Microbiol. 16, 4–9 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Kamada, N., Seo, S., Chen, G.Y. & Núñez, G. Role of gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335 (2013).

    CAS  PubMed  Google Scholar 

  24. 24

    Abraham, C. & Medzhitov, R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenerology 140, 1729–1737 (2011).

    CAS  Google Scholar 

  25. 25

    Wang, R. & Green, D.R. Metabolic checkpoints in activated T cells. Nat. Immunol. 13, 907–915 (2012).

    CAS  Google Scholar 

  26. 26

    Pearce, E.L. & Pearce, E.J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Michalek, R.D. et al. Cutting Edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Shi, L.Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of Th17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011). References 27 and 28 demonstrate that distinct metabolic programs critically regulate differentiation of T cell subsets.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Haschemi, A. et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15, 813–826 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Donohoe, D.R., Wali, A., Brylawski, B.P. & Bultman, S.J. Microbial regulation of glucose metabolism and cell-cycle progression in mammalian coloncytes. PLoS ONE 7, e46589 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Odegaard, J.I. & Chawla, A. The immune system as a sensor of the metabolic state. Immunity 38, 644–654 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. & Schoonjans, K. Targeting bile-acid signaling for metabolic diseases. Nat. Rev. Drug Discov. 7, 678–693 (2008).

    CAS  PubMed  Google Scholar 

  33. 33

    Fiorucci, S., Mencarelli, A., Palladino, G. & Cipriani, S. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol. Sci. 30, 570–580 (2009).

    CAS  PubMed  Google Scholar 

  34. 34

    Ridlon, J.M., Kang, D.L. & Hylemon, P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    CAS  PubMed  Google Scholar 

  35. 35

    Trauner, M. & Boyer, J.L. Bile salt transporters: molecular characterization, function, and regulation. Physiol. Rev. 83, 633–671 (2003).

    CAS  PubMed  Google Scholar 

  36. 36

    Tanaka, H., Hashiba, H., Kok, J. & Mierau, I. Bile salt hydrolase of Bifidobacterium longum–biochemical and genetic characterization. Appl. Environ. Microbiol. 66, 2502–2512 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Jones, B.V., Begley, M., Hill, C., Gahan, C.G. & Marchesi, J.R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA 105, 13580–13585 (2008).

    CAS  PubMed  Google Scholar 

  38. 38

    Sayin, S.I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013). This article comprehensively characterizes bile acid metabolism in multiple mouse tissues and provides insight into how beneficial commensal bacteria in the intestine regulate metabolism of bile acids.

    CAS  PubMed  Google Scholar 

  39. 39

    Martin, F.P. et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3, 112 (2007).

    PubMed  PubMed Central  Google Scholar 

  40. 40

    Claus, S.P. et al. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol. Syst. Biol. 4, 219 (2008).

    PubMed  PubMed Central  Google Scholar 

  41. 41

    Martin, F.P. et al. Panorganismal gut microbiome-host metabolic crosstalk. J. Proteome Res. 8, 2090–2105 (2009).

    CAS  PubMed  Google Scholar 

  42. 42

    Martin, F.P. et al. Dietary modulation of gut functional ecology studied by fecal metabonomics. J. Proteome Res. 9, 5284–5295 (2010).

    CAS  PubMed  Google Scholar 

  43. 43

    Swann, J.R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl. Acad. Sci. USA 108, 4523–4530 (2011). This article comprehensively characterizes amounts of bile acid metabolites in multiple tissues of germ-free mice versus conventionally reared mice.

    CAS  PubMed  Google Scholar 

  44. 44

    Claus, S.P. et al. Colonization-induced host-gut microbial metabolic interaction. MBio 2, e00271–10 (2011). References 39–42 and 44 compare metabolite levels in multiple compartments of conventionally reared mice versus germ-free mice using metabolomic approaches.

    PubMed  PubMed Central  Google Scholar 

  45. 45

    Duboc, H. et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62, 531–539 (2013).

    CAS  PubMed  Google Scholar 

  46. 46

    Vavassori, P., Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183, 6251–6261 (2009).This article demonstrates that FXR regulates intestinal inflammation in a model of IBD and provides mechanistic insight into how bile acid–FXR signaling inhibits activity of NF-κB.

    CAS  PubMed  Google Scholar 

  47. 47

    Wang, Y.D., Chen, W.D., Yu, D., Forman, B.M. & Huang, W. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulated hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology 54, 1421–1432 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Pols, T.W. et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 14, 747–757 (2011). This article demonstrates that the bile acid receptor TGR5 attenuates atherosclerosis by decreasing macrophage-associated inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Pellicciari, R. et al. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem. 52, 7958–7961 (2009).

    CAS  PubMed  Google Scholar 

  51. 51

    David, M., Petricoin, E. III & Larner, A.C. Activation of protein kinase A inhibits interferon induction of the Jak/Stat pathway in U266 cells. J. Biol. Chem. 271, 4585–4588 (1996).

    CAS  PubMed  Google Scholar 

  52. 52

    Lee, E.H. & Rikihisa, Y. Protein kinase A-mediated inhibition of gamma interferon-induced tyrosine phosphorylation of Janus kinases and latent cytoplasmic transcription factors in human monocytes by Ehrlichia chaffeensis. Infect. Immun. 66, 2514–2520 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Wen, A.Y., Sakamoto, K.M. & Miller, L.S. The role of the transcription factor CREB in immune function. J. Immunol. 185, 6413–6419 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Cipriani, S. et al. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS ONE 6, e25637 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Gadaleta, R.M. et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60, 463–472 (2011).

    CAS  PubMed  Google Scholar 

  56. 56

    Mencarelli, A. et al. The bile acid sensor farnesoid X receptor is a modulator of liver immunity in a rodent model of acute hepatitis. J. Immunol. 183, 6657–6666 (2009).

    CAS  PubMed  Google Scholar 

  57. 57

    Diao, H. et al. Osteopontin as a mediator of NKT cell function in T cell-mediated liver diseases. Immunity 21, 539–550 (2004).

    CAS  PubMed  Google Scholar 

  58. 58

    Lenz, K. Bile acid metabolism and vitamin B12 absorption in ulcerative colitis. Scand. J. Gastroenterol. 11, 769–775 (1976).

    CAS  PubMed  Google Scholar 

  59. 59

    Rutgeerts, P., Ghoos, Y. & Vantrappen, G. Bile acid studies in patients with Crohn's colitis. Gut 20, 1072–1077 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    CAS  Google Scholar 

  61. 61

    Turnbaugh, P.J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  PubMed Central  Google Scholar 

  62. 62

    Cani, P.D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    CAS  Google Scholar 

  63. 63

    Kobayashi, M. et al. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes 56, 239–247 (2007).

    CAS  PubMed  Google Scholar 

  64. 64

    Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    CAS  PubMed  Google Scholar 

  66. 66

    Karlsson, F.H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. 67

    Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci. USA 108, 4592–4598 (2011).

    CAS  PubMed  Google Scholar 

  68. 68

    Sobhani, I. et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE 6, e16393 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Abt, M.C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Ganal, S.C. et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37, 171–186 (2012).References 69 and 70 demonstrate that commensal bacteria–derived signals regulate antiviral immunity.

    CAS  PubMed  Google Scholar 

  71. 71

    Renga, B. et al. The acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation. PLoS ONE 8, e54472 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Nijmeijer, R.M. et al. Farnesoid X receptor (FXR) activation and FXR genetic variation in inflammatory bowel disease. PLoS ONE 6, e23745 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012).This reference demonstrates that at least some bile acids promote outgrowth of a pathogenic bacterial species in IL-10–deficient mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Chang, K.O. et al. Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proc. Natl. Acad. Sci. USA 101, 8733–8738 (2004).

    CAS  PubMed  Google Scholar 

  75. 75

    Chang, K.O. & George, D.W. Bile acids promote the expression of hepatitis C virus in replicon-harboring cells. J. Virol. 81, 9633–9640 (2007). References 74 and 75 demonstrate that bile acids regulate viral replication.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Miller, T.L. & Wolin, M.J. Fermentations by saccharolytic intestinal bacteria. Am. J. Clin. Nutr. 32, 164–172 (1979).

    CAS  PubMed  Google Scholar 

  77. 77

    Cummings, J.H. Fermentation in the human large intestine: evidence and implications for health. Lancet 1, 1206–1209 (1983).

    CAS  PubMed  Google Scholar 

  78. 78

    Cummings, J.H. & Macfarlane, G.T. The control and consequences of fermentation in the human colon. J. Appl. Bacteriol. 70, 443–459 (1991).

    CAS  PubMed  Google Scholar 

  79. 79

    Wong, J.M.W., de Souza, R., Kendall, C.W.C., Emam, A. & Jenkins, D.J.A. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40, 235–243 (2006).

    CAS  PubMed  Google Scholar 

  80. 80

    Cummings, J.H., Pomare, E.W., Branch, W.J., Naylor, C.P. & Macfarlane, G.T. Short chain fatty acids in human large intestine, portal, hepatic, and venous blood. Gut 28, 1221–1227 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Macfarlane, S. & Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62, 67–72 (2003).

    CAS  PubMed  Google Scholar 

  82. 82

    Smiricky-Tjardes, M.R. et al. In vitro fermentation characteristics of selected oligosaccharides by swine fecal microflora. J. Anim. Sci. 81, 2505–2514 (2003).

    CAS  PubMed  Google Scholar 

  83. 83

    Høverstad, T. & Midtvedt, T. Short-chain fatty acids in germfree mice and rats. J. Nutr. 116, 1772–1776 (1986).

    PubMed  Google Scholar 

  84. 84

    Donohoe, D.R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011). This article demonstrates that commensal bacteria–derived butyrate, an SCFA, is critical for maintaining metabolic homeostasis and regulating autophagy in colonocytes.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Maslowski, K.M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009). This article demonstrates that commensal bacteria–derived SCFAs have an anti-inflammatory role in a model of IBD.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Bjursell, M. et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 300, E211–E220 (2011).

    CAS  PubMed  Google Scholar 

  87. 87

    Bellahcene, M. et al. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. Br. J. Nutr. 109, 1755–1764 (2012).

    PubMed  Google Scholar 

  88. 88

    Kimura, I. et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. USA 108, 8030–8035 (2011).

    CAS  PubMed  Google Scholar 

  89. 89

    Sina, C., Jiang, H.-P., Li, J, Schreiber, S. & Rosenstiel, P. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183, 7514–7522 (2009).

    CAS  PubMed  Google Scholar 

  90. 90

    Vinolo, M.A. et al. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS ONE 6, e21205 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Brown, A.J. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain fatty acids. J. Biol. Chem. 278, 11312–11319 (2003).

    CAS  PubMed  Google Scholar 

  92. 92

    Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).

    CAS  PubMed  Google Scholar 

  93. 93

    Nilsson, N.E., Kotarsky, K., Owman, C. & Olde, B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047–1052 (2003). References 91–93 provide comprehensive pharmacologic characterizations of SCFA-GPR41 and SCFA-GPR43 interactions and demonstrate that SCFAs regulate immune cells.

    CAS  PubMed  Google Scholar 

  94. 94

    Cousens, L.S., Gallwitz, D. & Alberts, B.M. Different accessibilities in chromatin to histone acetylase. J. Biol. Chem. 254, 1716–1723 (1979).

    CAS  PubMed  Google Scholar 

  95. 95

    Donohoe, D.R. et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 48, 612–626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Hinnebusch, B.F., Meng, S., Wu, J.T., Archer, S.Y. & Hodin, R.A. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J. Nutr. 132, 1012–1017 (2002).

    CAS  PubMed  Google Scholar 

  97. 97

    Waldecker, M., Kautenburger, T., Daumann, H., Busch, C. & Schrenk, D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 19, 587–593 (2008).

    CAS  PubMed  Google Scholar 

  98. 98

    Virgin, H.W. & Levine, B. Autophagy genes in immunity. Nat. Immunol. 10, 461–470 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Hudson, B.D., Tikhonova, I.G., Pandey, S.K., Ulven, T. & Milligan, G. Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J. Biol. Chem. 287, 41195–41209 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Cox, M.A. et al. Short-chain fatty acids act as anti-inflammatory mediators by regulating prostaglandin E(2) and cytokines. World J. Gastroenterol. 15, 5549–5557 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Venkatraman, A. et al. Amelioration of dextran sulfate colitis by butyrate: role of heat shock protein 70 and NF-κB. Am. J. Physiol. Gastroenterol. Liver Physiol. 285, G177–G184 (2003).

    CAS  Google Scholar 

  102. 102

    Berndt, B.E. et al. Butyrate increases IL-23 production by stimulated dendritic cells. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1384–G1392 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Liu, L. et al. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cell Immunol. 277, 66–73 (2012).

    CAS  PubMed  Google Scholar 

  104. 104

    Eftimiadi, C. et al. Divergent effect of the anaerobic bacteria by-product butyric acid on the immune response: suppression of T-lymphocyte proliferation and stimulation of interleuking-1 beta production. Oral Microbiol. Immunol. 6, 17–23 (1991).

    CAS  PubMed  Google Scholar 

  105. 105

    Gilbert, K.M., DeLoose, A., Valentine, J.L. & Fifer, E.K. Structure-activity relationship between carboxylic acids and T cell cycle blockade. Life Sci. 78, 2159–2165 (2006).

    CAS  PubMed  Google Scholar 

  106. 106

    Bailón, E. et al. Butyrate in vitro immune-modulatory effects might be mediated through a proliferation-related induction of apoptosis. Immunobiology 215, 863–873 (2010).

    PubMed  Google Scholar 

  107. 107

    Zimmerman, M.A. et al. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1405–G1415 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Huang, N., Katz, J.P., Martin, D.R. & Wu, G.D. Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone hyperacetylation. Cytokine 9, 27–36 (1997).

    CAS  PubMed  Google Scholar 

  109. 109

    Patel, K.K. & Stappenbeck, T.S. Autophagy and intestinal homeostasis. Annu. Rev. Physiol. 75, 241–262 (2012).

  110. 110

    Shakespear, M.R., Halili, M.A., Irvine, K.M., Fairlie, D.P. & Sweet, M.J. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 32, 335–343 (2011).

    CAS  PubMed  Google Scholar 

  111. 111

    Scheppach, W. et al. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103, 51–56 (1992).

    CAS  PubMed  Google Scholar 

  112. 112

    Segain, J.P. et al. Buytrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut 47, 397–403 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Resta, S.C. Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. J. Physiol. (Lond.) 587, 4169–4174 (2009).

    CAS  Google Scholar 

  114. 114

    Bhaskaram, P. Micronutrient malnutrition, infection, and immunity: an overview. Nutr. Rev. 60, S40–S45 (2002).

    PubMed  Google Scholar 

  115. 115

    Cheng, C.H., Chang, S.J., Lee, B.J., Lin, K.L. & Huang, Y.C. Vitamin B6 supplementation increases immune responses in critically ill patients. Eur. J. Clin. Nutr. 60, 1207–1213 (2006).

    CAS  PubMed  Google Scholar 

  116. 116

    Meydani, S.N. et al. Vitamin E supplementation and in vivo immune response in healthy elderly subjects: a randomized controlled trial. J. Am. Med. Assoc. 277, 1380–1386 (1997).

    CAS  Google Scholar 

  117. 117

    Tamura, J. et al. Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin. Exp. Immunol. 116, 28–32 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Cantorna, M.T., Zhu, Y., Froicu, M. & Wittke, A. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am. J. Clin. Nutr. 80, 1717S–1720S (2004).

    CAS  PubMed  Google Scholar 

  119. 119

    Hashimoto, T. et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487, 477–481 (2012). This article suggests that commensal bacteria may regulate intestinal inflammation by influencing absorption of amino acids.

    CAS  PubMed  Google Scholar 

  120. 120

    Kunisawa, J., Hashimoto, E., Ishikawa, I. & Kiyono, H. A pivotal role of vitamin B9 in the maintenance of regulatory T cells in vitro and in vivo. PLoS ONE 7, e32094 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Spencer, S.P. & Belkaid, Y. Dietary and commensal derived nutrients: shaping mucosal and systemic immunity. Curr. Opin. Immunol. 24, 379–384 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012)This article demonstrates that B-vitamin metabolites bind MR1 and promote mucosa-associated invariant T cell activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Dusseaux, M. et al. Human MAIT cells are xenobiotic resistant, tissue-targeted, CD161hi IL-17 secreting T cells. Blood 117, 1250–1259 (2011).

    CAS  PubMed  Google Scholar 

  124. 124

    Walker, L.J. et al. Human MAIT cells and CD8alphaalpha cells develop from a pool of type-17 precommitted CD8+ T cells. Blood 119, 422–433 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010).

    CAS  PubMed  Google Scholar 

  126. 126

    Le Bourhis, L., Mburu, Y.K. & Lantz, O. MAIT cells, surveyors of a new class of antigen: development and functions. Curr. Opin. Immunol. 25, 174–180 (2013).

    CAS  PubMed  Google Scholar 

  127. 127

    Smith, M.I., et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Trehan, I. et al. Antibiotics as part of the management of severe acute malnutrition. N. Engl. J. Med. 368, 425–435 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Mestdagh, R. et al. Gut microbiota modulate the metabolism of brown adipose tissue in mice. J. Proteome Res. 11, 620–630 (2012).

    CAS  PubMed  Google Scholar 

  130. 130

    Tannahill, G.M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013). This article demonstrates that glucose oxidation and amounts of the citric acid cycle intermediate succinate regulate production of IL-1β.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Matsumoto, M. et al. Impact of intestinal microbiota on intestinal luminal metabolome. Scientific Reports 2, 233 (2012).

    PubMed  PubMed Central  Google Scholar 

  132. 132

    Whitt, D.D. & Demoss, R.D. Effect of microflora on the free amino acid distribution in various regions of the mouse gastrointestinal tract. Appl. Microbiol. 30, 609–615 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    McGaha, T.L. et al. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity. Immunol. Rev. 249, 135–157 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Morris, S.M. Jr. Arginases and arginine deficiency syndromes. Curr. Opin. Clin. Nutr. Metab. Care 15, 64–70 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Puccetti, P. & Grohmann, U. IDO and regulatory T cells: a role for reverse signaling and non-canonical NF-κB activation. Nat. Rev. Immunol. 7, 817–823 (2007).

    CAS  PubMed  Google Scholar 

  136. 136

    Das, P., Lahiri, A., Lahiri, A. & Chakravortty, D. Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog. 6, e1000899 (2010).

    PubMed  PubMed Central  Google Scholar 

  137. 137

    Munn, D.H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Nowak, E.C. et al. Tryptophan hydroxylase-1 regulates immune tolerance and inflammation. J. Exp. Med. 209, 2127–2135 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Rodriguez, P.C. et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64, 5839–5849 (2004).

    CAS  PubMed  Google Scholar 

  140. 140

    Cobbold, S.P. et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl. Acad. Sci. USA 106, 12055–12060 (2009).

    CAS  Google Scholar 

  141. 141

    Scrimshaw, N.S., Wilson, D. & Bressani, R. Infection and kwaszhiorkor. J. Trop. Pediatr. 6, 37–43 (1960).

    CAS  Google Scholar 

  142. 142

    Müller, O. & Krawinkel, M. Malnutrition and health in developing countries. CMAJ 173, 279–286 (2005).

    PubMed  PubMed Central  Google Scholar 

  143. 143

    Black, R.E. et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371, 243–260 (2008).

    PubMed  Google Scholar 

  144. 144

    Rice, A.L., Sacco, L., Hyder, A. & Black, R.E. Malnutrition as an underlying cause of childhood deaths associated with infectious diseases in developing countries. Bull. World Health Organ. 78, 1207–1221 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Pretorius, P.J. & De Villers, L.S. Antibody response in children with protein malnutrition. Am. J. Clin. Nutr. 10, 379–383 (1962).

    CAS  PubMed  Google Scholar 

  146. 146

    Savy, M. et al. Landscape analysis of interactions between nutrition and vaccine responses in children. J. Nutr. 139, 2154S–2218S (2009).

    CAS  PubMed  Google Scholar 

  147. 147

    Dumas, M.E. et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. USA 103, 12511–12516 (2006).

    CAS  PubMed  Google Scholar 

  148. 148

    Rossjohn, J., Pellicci, D.G., Patel, O., Gapin, L. & Godfrey, D.I. Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 12, 845–857 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Wei, B. et al. Commensal microbiota and CD8+ T cells shape the formation of invariant NKT cells. J. Immunol. 184, 1218–1226 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Kidani, Y. & Bensinger, S.J. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity. Immunol. Rev. 249, 72–83 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Hong, C. et al. Coordinate regulation of neutrophil homeostasis by liver X receptors in mice. J. Clin. Invest. 122, 337–347 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Odegaard, J.I. et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Odegaard, J.I. et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Mukundan, L. et al. PPAR-δ senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat. Med. 15, 1266–1272 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat. Immunol. 5, 104–112 (2004).

    CAS  PubMed  Google Scholar 

  157. 157

    Are, A. et al. Enterococcus faecalis from newborn babies regulate endogenous PPARgamma activity and IL-10 levels in colonic epithelial cells. Proc. Natl. Acad. Sci. USA 105, 1943–1948 (2008).

    CAS  PubMed  Google Scholar 

  158. 158

    Gerriets, V.A. & Rathmell, J.C. Metabolic pathways in T cell fate and function. Trends Immunol. 33, 168–173 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Pearce, E.L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009). This article suggests that metabolism of fatty acids is critical for formation of CD8+ memory T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Ito, K. et al. PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18, 1350–1358 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Artis laboratory for discussions and critical reading of the manuscript. Supported by US National Institutes of Health grants (AI061570, AI074878, AI083480, AI087990, AI095466, AI095608, AI097333 and AI102942 to D.A.), the Burroughs Wellcome Fund Investigator in Pathogenesis of Infectious Disease Award (D.A.) and the Crohn's and Colitis Foundation of America (D.A.). J.R.B. is supported by National Institutes of Health grant T32-AI060516.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Artis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brestoff, J., Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14, 676–684 (2013). https://doi.org/10.1038/ni.2640

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing