Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diversity and dynamism of IgA−microbiota interactions

Abstract

IgA mediates microbial homeostasis at the intestinal mucosa. Within the gut, IgA acts in a context-dependent manner to both prevent and promote bacterial colonization and to influence bacterial gene expression, thus providing exquisite control of the microbiota. IgA–microbiota interactions are highly diverse across individuals and populations, yet the factors driving this variation remain poorly understood. In this Review, we summarize evidence for the host, bacterial and environmental factors that influence IgA–microbiota interactions. Recent advances have helped to clarify the antigenic specificity and immune selection of intestinal IgA and have highlighted the importance of microbial glycan recognition. Furthermore, emerging evidence suggests that diet and nutrition play an important role in shaping IgA recognition of the microbiota. IgA–microbiota interactions are disrupted during both overnutrition and undernutrition and may be altered dynamically in response to diet, with potential implications for host health. We situate this research in the context of outstanding questions and future directions in order to better understand the fascinating paradigm of IgA–microbiota homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of microbiota-reactive IgA through T cell-independent and T cell-dependent pathways.
Fig. 2: Functions of IgA in the gastrointestinal tract.
Fig. 3: Nutrition and IgA–microbiota interactions.

Similar content being viewed by others

References

  1. Gopalakrishna, K. P. et al. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants. Nat. Med. 25, 1110–1115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mirpuri, J. et al. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes 5, 28–39 (2014).

    Article  PubMed  Google Scholar 

  3. Rogier, E. W. et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc. Natl Acad. Sci. USA 111, 3074 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zheng, W. et al. Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature 577, 543–548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Janzon, A. et al. Interactions between the gut microbiome and mucosal immunoglobulins A, M, and G in the developing infant gut. mSystems https://doi.org/10.1128/mSystems.00612-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lindner, C. et al. Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. J. Exp. Med. 209, 365–377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Planer, J. D. et al. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534, 263–266 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dzidic, M. et al. Aberrant IgA responses to the gut microbiota during infancy precedes asthma and allergy development. J. Allergy. Clin. Immunol. https://doi.org/10.1016/j.jaci.2016.06.047 (2016).

    Article  PubMed  Google Scholar 

  9. Alipour, M. et al. Mucosal barrier depletion and loss of bacterial diversity are primary abnormalities in paediatric ulcerative colitis. J. Crohn’s Colitis 10, 462–471 (2016).

    Article  Google Scholar 

  10. Macpherson, A., Khoo, U. Y., Forgacs, I., Philpott-Howard, J. & Bjarnason, I. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut 38, 365–375 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014). This fundamental study is one of the first to use IgA-SEQ and to demonstrate differences in IgA coating of pathobionts in patients with IBD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rengarajan, S. et al. Dynamic immunoglobulin responses to gut bacteria during inflammatory bowel disease. Gut Microbes 11, 405–420 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Viladomiu, M. et al. IgA-coated E. coli enriched in Crohn’s disease spondyloarthritis promote TH17-dependent inflammation. Sci. Transl Med. 9, eaaf9655 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bridgman, S. L. et al. High fecal IgA is associated with reduced Clostridium difficile colonization in infants. Microbes Infect. 18, 543–549 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Jorgensen, G. H. et al. Clinical symptoms in adults with selective IgA deficiency: a case-control study. J. Clin. Immunol. 33, 742–747 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Koskinen, S. Long-term follow-up of health in blood donors with primary selective IgA deficiency. J. Clin. Immunol. 16, 165–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Huus, K. E. et al. Commensal bacteria modulate immunoglobulin a binding in response to host nutrition. Cell Host Microbe 27, 909–921 (2020). This paper shows that dietary adaptations in intestinal commensals can affect their IgA-binding ability, resulting in altered IgA–bacteria interactions during dietary shifts.

    Article  CAS  PubMed  Google Scholar 

  18. Huus, K. E. et al. Immunoglobulin recognition of fecal bacteria in stunted and non-stunted children: findings from the Afribiota study. Microbiome 8, 113 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kau, A. L. et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci. Transl Med. 7, 276ra24 (2015). This landmark paper shows that acute undernutrition in children is characterized by increased IgA recognition of pathogenic Proteobacteria but decreased recognition of other commensals; further, IgA+ Proteobacteria exacerbates undernutrition and enteropathy in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Petersen, C. et al. T cell-mediated regulation of the microbiota protects against obesity. Science 365, eaat9351 (2019). This paper demonstrates that genetic defects in microbiota IgA targeting exacerbate obesity in mice by altering microbiota colonization patterns.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jackson, K. J. L., Kidd, M. J., Wang, Y. & Collins, A. M. The shape of the lymphocyte receptor repertoire: lessons from the B cell receptor. Front. Immunol. 4, 263 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mathias, A. & Corthésy, B. Recognition of Gram-positive intestinal bacteria by hybridoma- and colostrum-derived secretory immunoglobulin a is mediated by carbohydrates. J. Biol. Chem. 286, 17239–17247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Day, C. J. et al. Glycan:glycan interactions: high affinity biomolecular interactions that can mediate binding of pathogenic bacteria to host cells. Proc. Natl Acad. Sci. USA 112, E7266–E7275 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bovenkamp, F. S. van de et al. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region. Proc. Natl Acad. Sci. USA 115, 1901–1906 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bunker, J. J. et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358, eaan6619 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Grasset, E. K. et al. Gut T cell-independent IgA responses to commensal bacteria require engagement of the TACI receptor on B cells. Sci. Immunol. 5, eaat7117 (2020). This paper elegantly differentiates between T cell-dependent and T cell-independent IgA responses in mice, showing that both contribute to IgA coating of the microbiota but that T cell-independent responses do not measurably affect microbiota composition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, H. et al. BCR selection and affinity maturation in Peyer’s patch germinal centres. Nature 582, 421–425 (2020). One of three recent papers (along with Nowosad et al. and Li et al.) to study the emergence of the B cell repertoire in intestinal Peyer’s patches; finding that certain ‘public’ clones with microbiota and glycan reactivity emerge repeatedly in independent mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, B. et al. Divergent T follicular helper cell requirement for IgA and IgE production to peanut during allergic sensitization. Sci. Immunol. 5, eaay2754 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kubinak, J. L. et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 17, 153–163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bunker, J. J. et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43, 541–553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ansaldo, E. et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 364, 1179–1184 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benckert, J. et al. The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J. Clin. Invest. 121, 1946–1955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kabbert, J. et al. High microbiota reactivity of adult human intestinal IgA requires somatic mutations. J. Exp. Med. 217, e20200275 (2020). This key study (alongside Sterlin et al.) defines the cross-species reactivity of human intestinal IgA clones and shows that it is dependent on somatic hypermutation, and not polyreactivity. This work further compares the binding capability of intestinal IgA from people with and without IBD.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chen, J. W. et al. Autoreactivity in naïve human fetal B cells is associated with commensal bacteria recognition. Science 369, 320–325 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Nowosad, C. R. et al. Tunable dynamics of B cell selection in gut germinal centres. Nature 588, 321–326 (2020). One of three recent papers (alongside Chen et al. (Nature, 2020) and Li et al.) to study the emergence of the B cell repertoire in intestinal Peyer’s patches. This study demonstrates a greater expansion of public clones in germ-free mice than in microbiota-colonized mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, H. et al. Mucosal or systemic microbiota exposures shape the B cell repertoire. Nature 584, 274–278 (2020). One of three recent papers (alongside Chen et al. (Nature, 2020) and Nowosad et al.) to study the emergence of the B cell repertoire in intestinal Peyer’s patches. This study compares intestinal and systemic IgA responses to show that SIgA targets surface antigens and remains relatively less diverse than systemic antibody.

    Article  CAS  PubMed  Google Scholar 

  37. James, K. R. & King, H. W. Germs and germlines: how “public” B-cell clones evolve in the gut. Immunol. Cell Biol. 98, 428–430 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pabst, O. & Slack, E. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol. 13, 12–21 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Sterlin, D. et al. Human IgA binds a diverse array of commensal bacteriaHuman IgA binds a wide array of commensals. J. Exp. Med. 217, e20181635 (2020). This key study (alongside Kabbert et al.) defines cross-species reactivity of human intestinal IgA clones. The authors demonstrate that SIgA has specific glycan-binding profiles for surface bacterial structures; they further delineate the microbiota specificity of human IgA1 and IgA2 responses throughout development.

    Article  PubMed  CAS  Google Scholar 

  40. Cullender, T. C. et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 14, 571–581 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bunker, J. J. et al. B cell superantigens in the human intestinal microbiota. Sci. Transl Med. 11, eaau9356 (2019). This paper demonstrates that human commensal Lachnospiraceae produce IgA superantigens.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Donaldson, G. P. et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360, 795–800 (2018). This landmark paper demonstrates that IgA could directly promote mucosal colonization of commensal Bacteroides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakajima, A. et al. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J. Exp. Med. 215, 2019–2034 (2018). This study demonstrates that glycosylated SIgA regulated a PUL in Bacteroides, affecting inter-bacterial metabolic cooperation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Naughton, J. A. et al. Divergent mechanisms of interaction of Helicobacter pylori and Campylobacter jejuni with mucus and mucins. Infect. Immun. 81, 2838–2850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garfias-López, J. A. et al. Immunization with intestinal microbiota-derived Staphylococcus aureus and Escherichia coli reduces bacteria-specific recolonization of the intestinal tract. Immunol. Lett. 196, 149–154 (2018).

    Article  PubMed  CAS  Google Scholar 

  46. Hendrickx, A. P. A. et al. Antibiotic-driven dysbiosis mediates intraluminal agglutination and alternative segregation of Enterococcus faecium from the intestinal epithelium. mBio 6, e01346–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moor, K. et al. Peracetic acid treatment generates potent inactivated oral vaccines from a broad range of culturable bacterial species. Front. Immunol. 7, 37 (2016).

    Article  CAS  Google Scholar 

  48. Moor, K. et al. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 544, 498–502 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Flannigan, K. L. & Denning, T. L. Segmented filamentous bacteria-induced immune responses: a balancing act between host protection and autoimmunity. Immunology 154, 537–546 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  50. Lécuyer, E. et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40, 608–620 (2014).

    Article  PubMed  CAS  Google Scholar 

  51. Melo-Gonzalez, F. et al. Antigen-presenting ILC3 regulate T cell–dependent IgA responses to colonic mucosal bacteria. J. Exp. Med. 216, 728–742 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Catanzaro, J. R. et al. IgA-deficient humans exhibit gut microbiota dysbiosis despite secretion of compensatory IgM. Sci. Rep. 9, 13574 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fadlallah, J. et al. Microbial ecology perturbation in human IgA deficiency. Sci. Transl Med. 16, eaan1217 (2018). This key paper shows that IgA deficiency in humans is characterized by both loss and gain of specific IgA-recognized intestinal bacteria.

    Article  CAS  Google Scholar 

  54. Jørgensen, S. F. et al. Selective IgA deficiency in humans is associated with reduced gut microbial diversity. J. Allergy Clin. Immunol. 143, 1969–1971 (2019).

    Article  PubMed  Google Scholar 

  55. Kubinak, J. L. & Round, J. L. Do antibodies select a healthy microbiota? Nat. Rev. Immunol. 16, 767–774 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A. L. & Foster, K. R. Host selection of microbiota via differential adhesion. Cell Host Microbe 19, 550–559 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Hoces, D., Arnoldini, M., Diard, M., Loverdo, C. & Slack, E. Growing, evolving and sticking in a flowing environment: understanding IgA interactions with bacteria in the gut. Immunology 159, 52–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Bansept, F. et al. Enchained growth and cluster dislocation: a possible mechanism for microbiota homeostasis. PLOS Comput. Biol. 15, e1006986 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Briliūtė, J. et al. Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat. Microbiol. 4, 1571–1581 (2019).

    Article  PubMed  CAS  Google Scholar 

  60. Orndorff, P. E. et al. Immunoglobulin-mediated agglutination of and biofilm formation by Escherichia coli K-12 require the type 1 pilus fiber. Infect. Immun. 72, 1929–1938 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Randal Bollinger, R. et al. Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology 109, 580–587 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Uchimura, Y. et al. Antibodies set boundaries limiting microbial metabolite penetration and the resultant mammalian host response. Immunity 49, 545–559 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kawamoto, S. et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41, 152–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Fransen, F. et al. BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 43, 527–540 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Raskova Kafkova, L. et al. Secretory IgA N-glycans contribute to the protection against E. coli O55 infection of germ-free piglets. Mucosal Immunol. https://doi.org/10.1038/s41385-020-00345-8 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Forbes, S. J., Eschmann, M. & Mantis, N. J. Inhibition of Salmonella enterica serovar Typhimurium motility and entry into epithelial cells by a protective antilipopolysaccharide monoclonal immunoglobulin a antibody. Infect. Immun. 76, 4137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Forbes, S. J. et al. Association of a protective monoclonal IgA with the O antigen of Salmonella enterica serovar Typhimurium impacts type 3 secretion and outer membrane integrity. Infect. Immun. 80, 2454–2463 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Joglekar, P. et al. Intestinal IgA regulates expression of a fructan polysaccharide utilization locus in colonizing gut commensal Bacteroides thetaiotaomicron. mBio 10, e02321 (2019). This paper shows that intestinal IgA can regulate diet-specific PULs in commensal Bacteroides, supporting the importance of IgA in shaping microbiota metabolism.

    Article  Google Scholar 

  69. Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Peterson, D. A. et al. Characterizing the interactions between a naturally primed immunoglobulin A and its conserved Bacteroides thetaiotaomicron species-specific epitope in gnotobiotic mice. J. Biol. Chem. 290, 12630–12649 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Khan Polymorphic immune mechanisms regulate commensal repertoire. Cell Rep. 29, 541–550 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kubinak, J. L. et al. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection. Nat. Commun. 6, 8642 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Plichta, D. R., Graham, D. B., Subramanian, S. & Xavier, R. J. Therapeutic opportunities in inflammatory bowel disease: mechanistic dissection of host-microbiome relationships. Cell 178, 1041–1056 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Theodoratou, E. et al. The role of glycosylation in IBD. Nat. Rev. Gastroenterol. Hepatol. 11, 588–600 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Šimurina, M. et al. Glycosylation of immunoglobulin G associates with clinical features of inflammatory bowel diseases. Gastroenterology 154, 1320–1333.e10 (2018).

    Article  PubMed  CAS  Google Scholar 

  76. Grootjans, J. et al. Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science 363, 993–338 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huus, K. E. et al. Changes in IgA-targeted microbiota following fecal transplantation for recurrent Clostridioides difficile infection. Gut Microbes 13, 1–12 (2021).

    Article  PubMed  CAS  Google Scholar 

  78. Moon, C. et al. Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. Nature 521, 90–93 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Plaut, A. G., Gilbert, J. V., Artenstein, M. S. & Capra, J. D. Neisseria gonorrhoeae and Neisseria meningitidis: extracellular enzyme cleaves human immunoglobulin A. Science 190, 1103–1105 (1975).

    Article  CAS  PubMed  Google Scholar 

  80. Loomes, L. M., Senior, B. W. & Kerr, M. A. A proteolytic enzyme secreted by Proteus mirabilis degrades immunoglobulins of the immunoglobulin A1 (IgA1), IgA2, and IgG isotypes. Infect. Immun. 58, 1979–1985 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, C. et al. Fecal IgA levels are determined by strain-level differences in Bacteroides ovatus and are modifiable by gut microbiota manipulation. Cell Host Microbe 27, 467–475 (2020). This paper demonstrates the strain specificity of total IgA induction by human commensal isolates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yanagibashi, T. et al. IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells. Immunobiology 218, 645–651 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Cerutti, A. Location, location, location: B-cell differentiation in the gut lamina propria. Mucosal Immunol. 1, 8–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Ladinsky, M. S. et al. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science 363, eaat4042 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Marcotte, H. & Lavoie, M. C. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol. Mol. Biol. Rev. 62, 71 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Simón-Soro, Á. et al. Revealing microbial recognition by specific antibodies. BMC Microbiol. 15, 132 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Goncalves, P. et al. Antibody-coated microbiota in nasopharynx of healthy individuals and hypogammaglobulinemia patients. J. Allergy Clin. Immunol. 145, 1686–1690 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Madhwani, T. & McBain, A. J. The application of magnetic bead selection to investigate interactions between the oral microbiota and salivary immunoglobulins. PLoS ONE 11, e0158288 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Janeway, C. A, Travers, P. Jr, Walport, M., & Shlomchik, M. J. The mucosal immune system. Immunobiology: The Immune System in Health and Disease 5th edn (Garland Science, 2001).

  90. Berbers, R.-M. et al. Low IgA associated with oropharyngeal microbiota changes and lung disease in primary antibody deficiency. Front. Immunol. 11, 1245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Armstrong, H. et al. Host immunoglobulin G selectively identifies pathobionts in pediatric inflammatory bowel diseases. Microbiome 7, 1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chen, R. Y. et al. Duodenal microbiota in stunted undernourished children with enteropathy. N. Engl. J. Med. 383, 321–333 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Costalonga, M. & Herzberg, M. C. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol. Lett. 162, 22 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vonaesch, P. et al. Stunted childhood growth is associated with decompartmentalization of the gastrointestinal tract and overgrowth of oropharyngeal taxa. Proc. Natl Acad. Sci. USA 115, E8489–E8498 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Atarashi, K. et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 358, 359–365 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kitamoto, S. et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 182, 447–462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shapiro, J. M. et al. Immunoglobulin a targets a unique subset of the microbiota in inflammatory bowel disease. Cell Host Microbe 29, 83–93 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Sonnenburg, E. D. et al. Diet-induced extinction in the gut microbiota compounds over generations. Nature 529, 212–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Macpherson, A. J., de Agero, M. G. & Ganal-Vonarburg, S. C. How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 17, 508–517 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Shulzhenko, N. et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat. Med. 17, 1585–1593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Goverse, G. et al. Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. J. Immunol. 198, 2172–2181 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Hosomi, K., Kiyono, H. & Kunisawa, J. Fatty acid metabolism in the host and commensal bacteria for the control of intestinal immune responses and diseases. Gut Microbes 11, 276–284 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Proietti, M. et al. ATP released by intestinal bacteria limits the generation of protective IgA against enteropathogens. Nat. Commun. 10, 250 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Ren, W. et al. Glutamine-induced secretion of intestinal secretory immunoglobulin A: a mechanistic perspective. Front. Immunol. 7, 503 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Wu, W. et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 10, 946–956 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Black, R. E. et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382, 427–451 (2013).

    Article  PubMed  Google Scholar 

  108. Popkin, B. M., Corvalan, C. & Grummer-Strawn, L. M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 395, 65–74 (2020).

    Article  PubMed  Google Scholar 

  109. Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Naylor, C. et al. Environmental enteropathy, oral vaccine failure and growth faltering in infants in Bangladesh. EBioMedicine 2, 1759–1766 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Church, J. A., Parker, E. P., Kirkpatrick, B. D., Grassly, N. C. & Prendergast, A. J. Interventions to improve oral vaccine performance: a systematic review and meta-analysis. Lancet Infect. Dis. 19, 203–214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Beatty, D., Napier, B., Sinclair-Smith, C., McCabe, K. & Huges, E. Secretory IgA synthesis in Kwashiorkor. J. Clin. Lab. Immunol. 12, 31–36 (1983).

    CAS  PubMed  Google Scholar 

  113. Bell, R. G., Turner, K. J., Gracey, M. & Others. Serum and small intestinal immunoglobulin levels in undernourished children. Am. J. Clin. Nutr. 29, 392–397 (1976).

    Article  CAS  PubMed  Google Scholar 

  114. Syed, S. et al. Environmental enteropathy in undernourished Pakistani children: clinical and histomorphometric analyses. Am. J. Trop. Med. Hyg. 98, 1577–1584 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. McDonald, C. M. et al. Elevations in serum anti-flagellin and anti-LPS Igs are related to growth faltering in young Tanzanian children. Am. J. Clin. Nutr. 103, 1548–1554 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Campbell, D. I., Elia, M. & Lunn, P. G. Growth faltering in rural Gambian infants is associated with impaired small intestinal barrier function, leading to endotoxemia and systemic inflammation. J. Nutr. 133, 1332–1338 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Michael, H. et al. Malnutrition decreases antibody secreting cell numbers induced by an oral attenuated human rotavirus vaccine in a human infant fecal microbiota transplanted gnotobiotic pig model. Front. Immunol. 11, 196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rho, S. et al. Protein energy malnutrition alters mucosal IgA responses and reduces mucosal vaccine efficacy in mice. Immunol. Lett. 190, 247–256 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Goddard, F. G. B. et al. Child salivary SIgA and its relationship to enteric infections and EED biomarkers in maputo, mozambique. Int. J. Env. Res. Public Health 17, 3035 (2020).

    Article  CAS  Google Scholar 

  120. Kosek, M. N. et al. Causal pathways from enteropathogens to environmental enteropathy: findings from the MAL-ED birth cohort study. EBioMedicine 18, 109–117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Syed, S., Ali, A. & Duggan, C. Environmental enteric dysfunction in children. J. Pediatric Gastroenterol. Nutr. 63, 6–14 (2016).

    Article  Google Scholar 

  123. Gilmartin, A. A. & Petri, W. A. Exploring the role of environmental enteropathy in malnutrition, infant development and oral vaccine response. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140143 (2015).

    Article  Google Scholar 

  124. Lagos, R. et al. Effect of small bowel bacterial overgrowth on the immunogenicity of single-dose live oral cholera vaccine CVD 103-HgR. J. Infect. Dis. 180, 1709–1712 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Wegorzewska, M. M. et al. Diet modulates colonic T cell responses by regulating the expression of a Bacteroides thetaiotaomicron antigen. Sci. Immunol. 4, eaau9079 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Luccia, B. D. et al. Combined prebiotic and microbial intervention improves oral cholera vaccination responses in a mouse model of childhood undernutrition. Cell Host Microbe 27, 899–908.e5 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Luck, H. et al. Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nat. Commun. 10, 3650 (2019). This study shows that high-fat diets lead to reduced SIgA levels in mice and that IgA deficiency reciprocally exacerbates obesity on a high-fat diet.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Muhomah, T. A., Nishino, N., Katsumata, E., Haoming, W. & Tsuruta, T. High-fat diet reduces the level of secretory immunoglobulin A coating of commensal gut microbiota. Biosci. Microbiota Food Health 38, 55–64 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    Article  PubMed  CAS  Google Scholar 

  130. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Turnbaugh, P. J., Backhed, F., Fulton, L. & Gordon, J. I. Marked alterations in the distal gut microbiome linked to diet-induced obesity. Cell Host Microbe 3, 213–223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ussar, S. et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 22, 516–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Must, A. et al. The disease burden associated with overweight and obesity. JAMA 282, 1523–1529 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Pallaro, A. et al. Total salivary IgA, serum C3c and IgA in obese school children. J. Nutr. Biochem. 13, 539–542 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Tanaka, A. et al. Impaired immunity in obesity: suppressed but reversible lymphocyte responsiveness. Int. J. Obes. Relat. Metab. Disord. 17, 631–636 (1993).

    CAS  PubMed  Google Scholar 

  136. Perruzza, L. et al. Enrichment of intestinal Lactobacillus by enhanced secretory IgA coating alters glucose homeostasis in P2rx7−/− mice. Sci. Rep. 9, 9315 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Morrison, K. E., Jašarević, E., Howard, C. D. & Bale, T. L. It’s the fiber, not the fat: significant effects of dietary challenge on the gut microbiome. Microbiome 8, 15 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Swidsinski, A. et al. Bacterial overgrowth and inflammation of small intestine after carboxymethylcellulose ingestion in genetically susceptible mice. Inflamm. Bowel Dis. 15, 359–364 (2009).

    Article  PubMed  Google Scholar 

  141. Gibbons, S. M., Duvallet, C. & Alm, E. J. Correcting for batch effects in case-control microbiome studies. PLoS Comput.Biol. 14, e1006102 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Kennedy, K., Hall, M. W., Lynch, M. D. J., Moreno-Hagelsieb, G. & Neufeld, J. D. Evaluating bias of illumina-based bacterial 16S rRNA gene profiles. Appl. Environ. Microbiol. 80, 5717–5722 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Jackson, M. A. et al. Accurate identification and quantification of commensal microbiota bound by host immunoglobulins. Microbiome 9, 33 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Beller, A. et al. Specific microbiota enhances intestinal IgA levels by inducing TGF-β in T follicular helper cells of Peyer’s patches in mice. Eur. J. Immunol. 50, 783–794 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Parker, E. P. K., Kampmann, B., Kang, G. & Grassly, N. C. Influence of enteric infections on response to oral poliovirus vaccine: a systematic review and meta-analysis. J. Infect. Dis. 210, 853–864 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Praharaj, I. et al. Influence of nonpolio enteroviruses and the bacterial gut microbiota on oral poliovirus vaccine response: a study from South India. J. Infect. Dis. 219, 1178–1186 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Harris, V. C. et al. Significant correlation between the infant gut microbiome and rotavirus vaccine response in rural Ghana. J. Infect. Dis. 215, 34–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Harris, V. et al. Rotavirus vaccine response correlates with the infant gut microbiota composition in Pakistan. Gut Microbes 9, 93–101 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Parker, E. P. K. et al. Influence of the intestinal microbiota on the immunogenicity of oral rotavirus vaccine given to infants in south India. Vaccine 36, 264–272 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Harris, V. C. et al. Effect of antibiotic-mediated microbiome modulation on rotavirus vaccine immunogenicity: a human, randomized-control proof-of-concept trial. Cell Host Microbe 24, 197–207.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Oh, J. Z. et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 41, 478–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang, B. et al. Viral infection. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18. Science 346, 861–865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hagan, T. et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 178, 1313–13283 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fix, J. et al. Association between gut microbiome composition and rotavirus vaccine response among Nicaraguan infants. Am. J. Trop. Med. Hyg. 102, 213–219 (2020).

    Article  PubMed  Google Scholar 

  156. Taniuchi, M. et al. Impact of enterovirus and other enteric pathogens on oral polio and rotavirus vaccine performance in Bangladeshi infants. Vaccine 34, 3068–3075 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Huda, M. N. et al. Stool microbiota and vaccine responses of infants. Pediatrics 134, e362–e372 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Shi, Z. et al. Segmented filamentous bacteria prevent and cure rotavirus infection. Cell 179, 644–658.e13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hosomi, K. & Kunisawa, J. Impact of the intestinal environment on the immune responses to vaccination. Vaccine 38, 6959–6965 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Jong, S. E., de, Olin, A. & Pulendran, B. The impact of the microbiome on immunity to vaccination in humans. Cell Host Microbe 28, 169–179 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Ca, M. & Mb, T. Composition of gut microbiota and its influence on the immunogenicity of oral rotavirus vaccines. Vaccine 36, 3427–3433 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to K. Bauer, to R. Boutin and to our reviewers for their critical reading of this Review. Work in B.B.F.’s lab is supported by a Canadian Institutes for Health Research (CIHR) Foundation Grant. B.B.F. is also a Canadian Institute For Advanced Research (CIFAR) Senior Fellow. K.E.H. was supported by a CIHR Vanier Scholarship and a University of British Columbia Four Year Fellowship. C.P. was supported by a CIHR Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to B. Brett Finlay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks G. Nuñez, O. Pabst and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

IgA1

A subclass of IgA in humans, more abundant in the small intestine and in serum, less protease resistant than IgA2.

IgA2

A subclass of IgA in humans, more abundant in the colon, more protease resistant than IgA1.

Polyreactivity

Ability of an antibody to bind, nonspecifically, to multiple dissimilar antigenic targets.

Cross-species reactivity

Ability of an antibody to recognize related antigenic targets on distinct bacterial species or cells.

Superantigens

Bacterial antigens that bind strongly to host immune receptors and induce hyper-proliferation of immune cells.

Agglutination

Antibody-mediated aggregation of target bacteria, due to simultaneous binding of multiple bacterial cells by multivalent antibody. Occurs at high bacterial densities.

Enchained growth

Antibody-mediated linkage of a bacterium to its own daughter cells during asexual reproduction. Occurs at low bacterial densities.

Pathobionts

Microorganisms that are capable of causing adverse host effects in certain contexts.

Polysaccharide utilization loci

(PULs). Clusters of co-regulated genes in bacteria responsible for the metabolism of polysaccharides.

Operational taxonomic units

(OTUs). Taxonomic groupings of bacteria based on genetic sequence similarity, often defined as 98% identity of the 16S rRNA gene. Note that modern sequencing pipelines have increasingly replaced OTU with amplicon sequence variant (ASV), which defines every unique genetic sequence as its own taxon (i.e. 100% identity of the 16S rRNA gene).

Gnotobiotic mice

Germ-free animals colonized with a defined microbiota.

Nutraceutical

A nutritional supplement that provides a health benefit to the host.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huus, K.E., Petersen, C. & Finlay, B.B. Diversity and dynamism of IgA−microbiota interactions. Nat Rev Immunol 21, 514–525 (2021). https://doi.org/10.1038/s41577-021-00506-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00506-1

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology