Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SLP-65 regulates immunoglobulin light chain gene recombination through the PI(3)K-PKB-Foxo pathway

Abstract

Although the essential role of the adaptor protein SLP-65 in pre-B cell differentiation is established, the molecular mechanism underlying its function is poorly understood. In this study, we uncover a link between SLP-65–dependent signaling and the phosphoinositide-3-OH kinase (PI(3)K)–protein kinase B (PKB)–Foxo pathway. We show that the forkhead box transcription factor Foxo3a promotes light chain rearrangement in pre-B cells. Our data suggest that PKB suppresses light chain recombination by phosphorylating Foxo proteins, whereas reconstitution of SLP-65 function counteracts PKB activation and promotes Foxo3a and Foxo1 activity in pre-B cells. Together, these data illuminate a molecular function of SLP-65 and identify a key role for Foxo proteins in the regulation of light chain recombination, receptor editing and B cell selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signaling through PI(3)K and PKB regulates light chain recombination in pre-B cells.
Figure 2: PKB targets Foxo3a in pre-B cells.
Figure 3: Foxo3a-A3 promotes differentiation of pre-B cells.
Figure 4: Foxo3a-A3 prolongs the G1 phase of the cell cycle and stabilizes RAG-2.
Figure 5: Foxo3a-A3 counteracts the block in κ light chain expression in pre-B cells mediated by constitutively active PKB.
Figure 6: Foxo3a-deficient pre-B cells show impaired differentiation into BCR+ cells in vitro.
Figure 7: SLP-65 activates Foxo3a and Foxo1 in pre-B cells by counteracting PKB.
Figure 8: SLP-65 signaling regulates the PI(3)K-PKB-Foxo3a pathway in BCR+ cells.

Similar content being viewed by others

References

  1. Spicuglia, S., Franchini, D.M. & Ferrier, P. Regulation of V(D)J recombination. Curr. Opin. Immunol. 18, 158–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Oettinger, M.A., Schatz, D.G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Rooney, S., Chaudhuri, J. & Alt, F.W. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol. Rev. 200, 115–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Jumaa, H., Hendriks, R.W. & Reth, M. B cell signaling and tumorigenesis. Annu. Rev. Immunol. 23, 415–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Flemming, A., Brummer, T., Reth, M. & Jumaa, H. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat. Immunol. 4, 38–43 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Nemazee, D. et al. B-cell-receptor-dependent positive and negative selection in immature B cells. Curr. Top. Microbiol. Immunol. 245, 57–71 (2000).

    CAS  PubMed  Google Scholar 

  7. Halverson, R., Torres, R.M. & Pelanda, R. Receptor editing is the main mechanism of B cell tolerance toward membrane antigens. Nat. Immunol. 5, 645–650 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Tze, L.E. et al. Basal immunoglobulin signaling actively maintains developmental stage in immature B cells. PLoS Biol. 3, e82 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Meade, J., Tybulewicz, V.L. & Turner, M. The tyrosine kinase Syk is required for light chain isotype exclusion but dispensable for the negative selection of B cells. Eur. J. Immunol. 34, 1102–1110 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Bai, L. et al. Phospholipase Cγ2 contributes to light-chain gene activation and receptor editing. Mol. Cell. Biol. 27, 5957–5967 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hayashi, K., Nojima, T., Goitsuka, R. & Kitamura, D. Impaired receptor editing in the primary B cell repertoire of BASH-deficient mice. J. Immunol. 173, 5980–5988 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Keren, Z., Diamant, E., Ostrovsky, O., Bengal, E. & Melamed, D. Modification of ligand-independent B cell receptor tonic signals activates receptor editing in immature B lymphocytes. J. Biol. Chem. 279, 13418–13424 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Verkoczy, L. et al. Basal B cell receptor-directed phosphatidylinositol 3-kinase signaling turns off RAGs and promotes B cell-positive selection. J. Immunol. 178, 6332–6341 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Song, G., Ouyang, G. & Bao, S. The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9, 59–71 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coffer, P.J. & Burgering, B.M. Forkhead-box transcription factors and their role in the immune system. Nat. Rev. Immunol. 4, 889–899 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Lin, L., Hron, J.D. & Peng, S.L. Regulation of NF-κB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 21, 203–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Tothova, Z. et al. Foxos are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Paik, J.H. et al. Foxos are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Biggs, W.H., III, Meisenhelder, J., Hunter, T., Cavenee, W.K. & Arden, K.C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl. Acad. Sci. USA 96, 7421–7426 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kops, G.J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Takaishi, H. et al. Regulation of nuclear translocation of forkhead transcription factor AFX by protein kinase B. Proc. Natl. Acad. Sci. USA 96, 11836–11841 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wossning, T. et al. Deregulated Syk inhibits differentiation and induces growth factor-independent proliferation of pre-B cells. J. Exp. Med. 203, 2829–2840 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science 283, 390–392 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Andjelkovic, M. et al. Role of translocation in the activation and function of protein kinase B. J. Biol. Chem. 272, 31515–31524 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Meixlsperger, S. et al. Conventional light chains inhibit the autonomous signaling capacity of the B cell receptor. Immunity 26, 323–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Kohn, A.D. et al. Construction and characterization of a conditionally active version of the serine/threonine kinase Akt. J. Biol. Chem. 273, 11937–11943 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Birkenkamp, K.U. et al. Foxo3a induces differentiation of Bcr-Abl-transformed cells through transcriptional down-regulation of Id1. J. Biol. Chem. 282, 2211–2220 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Lin, W.C. & Desiderio, S. Cell cycle regulation of V(D)J recombination-activating protein RAG-2. Proc. Natl. Acad. Sci. USA 91, 2733–2737 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Z., Dordai, D.I., Lee, J. & Desiderio, S. A conserved degradation signal regulates RAG-2 accumulation during cell division and links V(D)J recombination to the cell cycle. Immunity 5, 575–589 (1996).

    Article  PubMed  Google Scholar 

  30. Lee, J. & Desiderio, S. Cyclin A/CDK2 regulates V(D)J recombination by coordinating RAG-2 accumulation and DNA repair. Immunity 11, 771–781 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Castrillon, D.H., Miao, L., Kollipara, R., Horner, J.W. & DePinho, R.A. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301, 215–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Hobeika, E. et al. Testing gene function early in the B cell lineage in mb1-cre mice. Proc. Natl. Acad. Sci. USA 103, 13789–13794 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grandage, V.L., Gale, R.E., Linch, D.C. & Khwaja, A. PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-κB, MAPkinase and p53 pathways. Leukemia 19, 586–594 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Gesbert, F., Sellers, W.R., Signoretti, S., Loda, M. & Griffin, J.D. BCR/ABL regulates expression of the cyclin-dependent kinase inhibitor p27Kip1 through the phosphatidylinositol 3-kinase/AKT pathway. J. Biol. Chem. 275, 39223–39230 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Kharas, M.G. et al. Phosphoinositide 3-kinase signaling is essential for ABL oncogene-mediated transformation of B-lineage cells. Blood 103, 4268–4275 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Komatsu, N. et al. A member of Forkhead transcription factor FKHRL1 is a downstream effector of STI571-induced cell cycle arrest in BCR-ABL-expressing cells. J. Biol. Chem. 278, 6411–6419 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Hosaka, T. et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc. Natl. Acad. Sci. USA 101, 2975–2980 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang, H. et al. Ubiquitylation of RAG-2 by Skp2-SCF links destruction of the V(D)J recombinase to the cell cycle. Mol. Cell 18, 699–709 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Kops, G.J. et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell. Biol. 22, 2025–2036 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Medema, R.H., Kops, G.J., Bos, J.L. & Burgering, B.M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Otero, D.C., Omori, S.A. & Rickert, R.C. Cd19-dependent activation of Akt kinase in B-lymphocytes. J. Biol. Chem. 276, 1474–1478 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Tuveson, D.A., Carter, R.H., Soltoff, S.P. & Fearon, D.T. CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase. Science 260, 986–989 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Cheng, A.M. et al. Syk tyrosine kinase required for mouse viability and B-cell development. Nature 378, 303–306 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Otero, D.C. & Rickert, R.C. CD19 function in early and late B cell development. II. CD19 facilitates the pro-B/pre-B transition. J. Immunol. 171, 5921–5930 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298–302 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Diamant, E., Keren, Z. & Melamed, D. CD19 regulates positive selection and maturation in B lymphopoiesis: lack of CD19 imposes developmental arrest of immature B cells and consequential stimulation of receptor editing. Blood 105, 3247–3254 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Shivtiel, S., Leider, N., Sadeh, O., Kraiem, Z. & Melamed, D. Impaired light chain allelic exclusion and lack of positive selection in immature B cells expressing incompetent receptor deficient of CD19. J. Immunol. 168, 5596–5604 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Storch, B., Meixlsperger, S. & Jumaa, H. The Ig-α ITAM is required for efficient differentiation but not proliferation of pre-B cells. Eur. J. Immunol. 37, 252–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Kohler, F. et al. A leucine zipper in the N terminus confers membrane association to SLP-65. Nat. Immunol. 6, 204–210 (2005).

    Article  PubMed  Google Scholar 

  50. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Eschbach and I. Fiedler for technical assistance, A. Wuerch for cell sorting, P.J. Nielsen for critical discussion, B.A. Hemmings (Friedrich Miescher Institute for Biomedical Research) for the cDNA encoding a myristoylated PKB, W.S. Pear (University of Pennsylvania School of Medicine) for pMIG, B.M.T. Burgering (University Medical Center Utrecht) for a plasmid containing the Foxo3a-A3 construct, and R.Y. Tsien (University of California San Diego) for the tdTomato construct. Supported by the Claudia Adam Barr Foundation and the Damon Runyon Cancer Research Foundation (J.-H.P.), the Robert A. and Renee E. Belfer Foundation for Innovative Cancer Science (R.A.D.), the Deutsche Forschungsgemeinschaft (SFB620 and SFB746) and the Excellence Initiative of the German federal and state governments (EXC294).

Author information

Authors and Affiliations

Authors

Contributions

S.H. designed experiments, did all experimental studies unless otherwise indicated and wrote the manuscript. E.H. established the correlation between receptor expression and PKB regulation. S.M. established the inducible PKB (ERT2-PKB) system and performed the respective experiment. J.-H.P. and R.A.D. provided suggestions and mice deficient for Foxo3a. M.R. provided suggestions for experimental design. H.J. designed experiments, supervised the study, developed the concept and wrote the manuscript together with S.H.

Corresponding author

Correspondence to Hassan Jumaa.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 534 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, S., Hug, E., Meixlsperger, S. et al. SLP-65 regulates immunoglobulin light chain gene recombination through the PI(3)K-PKB-Foxo pathway. Nat Immunol 9, 623–631 (2008). https://doi.org/10.1038/ni.1616

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1616

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing