Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Foxo1 directly regulates the transcription of recombination-activating genes during B cell development

Abstract

Regulated expression of the recombinase RAG-1 and RAG-2 proteins is necessary for generating the vast repertoire of antigen receptors essential for adaptive immunity. Here, a retroviral cDNA library screen showed that the stress-regulated protein GADD45a activated transcription of the genes encoding RAG-1 and RAG-2 in transformed pro–B cells by a pathway requiring the transcription factor Foxo1. Foxo1 directly activated transcription of the Rag1-Rag2 locus throughout early B cell development, and a decrease in Foxo1 protein diminished the induction of Rag1 and Rag2 transcription in a model of receptor editing. We also found that transcription of Rag1 and Rag2 was repressed at the pro–B cell and immature B cell stages by the kinase Akt through its 'antagonism' of Foxo1 function. Thus, Foxo1 is a key regulator of Rag1 and Rag2 transcription in primary B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of Gadd45a by a retroviral cDNA library screen for factors that induce Rag1 transcription in AMuLV-transformed B cells.
Figure 2: GADD45a induces Rag1 transcription by a MEKK4- and p38-dependent pathway.
Figure 3: Foxo1 functions 'downstream' of GADD45a to increase Rag1 transcription in AMuLV-transformed pro–B cells.
Figure 4: Overexpression of Foxo1 increases Rag1 transcription in primary B lymphocytes, whereas constitutively active Akt suppresses it.
Figure 5: A decrease in Foxo1 protein in primary B lymphocytes decreases Rag1 transcription at all stages of B cell development.
Figure 6: IL-7R and BCR signaling repress Rag transcription through the PI(3)K-Akt signaling axis.
Figure 7: A decrease in Foxo1 protein in primary immature B cells interferes with Rag1 and Rag2 transcript induction in response to BCR crosslinking.
Figure 8: Foxo1 acts directly on the Rag locus.

Similar content being viewed by others

References

  1. Schatz, D.G. V(D)J recombination. Immunol. Rev. 200, 5–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Borghesi, L. et al. B lineage-specific regulation of V(D)J recombinase activity is established in common lymphoid progenitors. J. Exp. Med. 199, 491–502 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grawunder, U. et al. Down-regulation of RAG1 and RAG2 gene expression in PreB cells after functional immunoglobulin heavy chain rearrangement. Immunity 3, 601–608 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Verkoczy, L. et al. Basal B cell receptor-directed phosphatidylinositol 3-kinase signaling turns off RAGs and promotes B cell-positive selection. J. Immunol. 178, 6332–6341 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Halverson, R., Torres, R.M. & Pelanda, R. Receptor editing is the main mechanism of B cell tolerance toward membrane antigens. Nat. Immunol. 5, 645–650 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Tiegs, S.L., Russell, D.M. & Nemazee, D. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177, 1009–1020 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Geier, J.K. & Schlissel, M.S. Pre-BCR signals and the control of Ig gene rearrangements. Semin. Immunol. 18, 31–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Llorian, M., Stamataki, Z., Hill, S., Turner, M. & Martensson, I.L. The PI3K p110δ is required for down-regulation of RAG expression in immature B cells. J. Immunol. 178, 1981–1985 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Kuwata, N., Igarashi, H., Ohmura, T., Aizawa, S. & Sakaguchi, N. Cutting edge: absence of expression of RAG1 in peritoneal B-1 cells detected by knocking into RAG1 locus with green fluorescent protein gene. J. Immunol. 163, 6355–6359 (1999).

    CAS  PubMed  Google Scholar 

  10. Rosenberg, N., Baltimore, D. & Scher, C.D. In vitro transformation of lymphoid cells by Abelson murine leukemia virus. Proc. Natl. Acad. Sci. USA 72, 1932–1936 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Muljo, S.A. & Schlissel, M.S. A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nat. Immunol. 4, 31–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Fornace, A.J. Jr, Alamo, I. Jr & Hollander, M.C. DNA damage-inducible transcripts in mammalian cells. Proc. Natl. Acad. Sci. USA 85, 8800–8804 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhan, Q. Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage. Mutat. Res. 569, 133–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Takekawa, M. & Saito, H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95, 521–530 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Lu, B. et al. GADD45γ mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector TH1 cells. Immunity 14, 583–590 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, J., Zhu, H., Murphy, T.L., Ouyang, W. & Murphy, K.M. IL-18-stimulated GADD45β required in cytokine-induced, but not TCR-induced, IFN-γ production. Nat. Immunol. 2, 157–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Chi, H., Lu, B., Takekawa, M., Davis, R.J. & Flavell, R.A. GADD45β/GADD45γ and MEKK4 comprise a genetic pathway mediating STAT4-independent IFNγ production in T cells. EMBO J. 23, 1576–1586 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mattioni, T., Louvion, J.F. & Picard, D. Regulation of protein activities by fusion to steroid binding domains. Methods Cell Biol. 43, 335–352 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J. & Elledge, S.J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 102, 13212–13217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerwins, P., Blank, J.L. & Johnson, G.L. Cloning of a novel mitogen-activated protein kinase kinase kinase, MEKK4, that selectively regulates the c-Jun amino terminal kinase pathway. J. Biol. Chem. 272, 8288–8295 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Loots, G.G. & Ovcharenko, I. rVISTA 2.0: evolutionary analysis of transcription factor binding sites. Nucleic Acids Res. 32, W217–221 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Biggs, W.H. III, Cavenee, W.K. & Arden, K.C. Identification and characterization of members of the FKHR (FOX O) subclass of winged-helix transcription factors in the mouse. Mamm. Genome 12, 416–425 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Greer, E.L. & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Coffer, P.J. & Burgering, B.M. Forkhead-box transcription factors and their role in the immune system. Nat. Rev. Immunol. 4, 889–899 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Biggs, W.H. III, Meisenhelder, J., Hunter, T., Cavenee, W.K. & Arden, K.C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl. Acad. Sci. USA 96, 7421–7426 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bellacosa, A. et al. Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17, 313–325 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Hu, H. et al. Foxp1 is an essential transcriptional regulator of B cell development. Nat. Immunol. 7, 819–826 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Verkoczy, L. et al. A role for nuclear factor κB/rel transcription factors in the regulation of the recombinase activator genes. Immunity 22, 519–531 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burgering, B.M. & Coffer, P.J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Billips, L.G. et al. Immunoglobulin recombinase gene activity is modulated reciprocally by interleukin 7 and CD19 in B cell progenitors. J. Exp. Med. 182, 973–982 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Johnson, K. et al. Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling. Immunity 28, 335–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Corcoran, A.E. et al. The interleukin-7 receptor α chain transmits distinct signals for proliferation and differentiation during B lymphopoiesis. EMBO J. 15, 1924–1932 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Venkitaraman, A.R. & Cowling, R.J. Interleukin-7 induces the association of phosphatidylinositol 3-kinase with the α chain of the interleukin-7 receptor. Eur. J. Immunol. 24, 2168–2174 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Tze, L.E. et al. Basal immunoglobulin signaling actively maintains developmental stage in immature B cells. PLoS Biol. 3, e82 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen, J., Yusuf, I., Andersen, H.M. & Fruman, D.A. FOXO transcription factors cooperate with δEF1 to activate growth suppressive genes in B lymphocytes. J. Immunol. 176, 2711–2721 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Hsu, L.Y. et al. A conserved transcriptional enhancer regulates RAG gene expression in developing B cells. Immunity 19, 105–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Bain, G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Choi, J.K., Shen, C.P., Radomska, H.S., Eckhardt, L.A. & Kadesch, T. E47 activates the Ig-heavy chain and TdT loci in non-B cells. EMBO J. 15, 5014–5021 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lazorchak, A.S., Schlissel, M.S. & Zhuang, Y. E2A and IRF-4/Pip promote chromatin modification and transcription of the immunoglobulin κ locus in pre-B cells. Mol. Cell. Biol. 26, 810–821 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alcamo, E. et al. Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-κB in leukocyte recruitment. J. Immunol. 167, 1592–1600 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Kontgen, F. et al. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev. 9, 1965–1977 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Sasaki, Y. et al. Canonical NF-κB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation. Immunity 24, 729–739 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Melamed, D. & Nemazee, D. Self-antigen does not accelerate immature B cell apoptosis, but stimulates receptor editing as a consequence of developmental arrest. Proc. Natl. Acad. Sci. USA 94, 9267–9272 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fruman, D.A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Manning, B.D. & Cantley, L.C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lindsley, C.W. et al. Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg. Med. Chem. Lett. 15, 761–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Hollander, M.C. et al. Genomic instability in Gadd45a-deficient mice. Nat. Genet. 23, 176–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Salvador, J.M. et al. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity 16, 499–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Furuyama, T. et al. Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J. Biol. Chem. 279, 34741–34749 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all who provided mice (N. Sakaguchi; Kumamoto University) and plasmid constructs (K. Murphy (University of Washington at St. Louis), A. Rao (Harvard Medical School), E. Olson (University of Texas Southwestern Medical Center), D. Fruman (University of California at Irvine), W. Sha (University of California at Berkeley), N. Rosenberg (Tufts Medical School) and G. Barton (University of California at Berkeley)); H. Nolla (Cancer Research Laboratories, University of California at Berkeley) for help with flow cytometry cell sorting; and P. Herzmark (University of California at Berkeley) for help and advice with live microscopy. Supported by the National Institutes of Health (RO1 HL48702 and RO1 AI57487 to M.S.S.).

Author information

Authors and Affiliations

Authors

Contributions

R.H.A. did all the experiments; and R.H.A. and M.S.S. jointly designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Mark S Schlissel.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Methods and Supplementary Tables 1–3 (PDF 2656 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amin, R., Schlissel, M. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat Immunol 9, 613–622 (2008). https://doi.org/10.1038/ni.1612

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1612

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing