Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma

Abstract

Pilocytic astrocytoma, the most common childhood brain tumor1, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations2. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression3 and often becoming a chronic disease with substantial morbidities4. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene5. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: New BRAF alterations in pilocytic astrocytoma.
Figure 2: NTRK2 is a new gene fusion target in pilocytic astrocytoma.
Figure 3: FGF pathway signaling molecules are recurrently altered in pilocytic astrocytoma.
Figure 4: Summary of MAPK pathway alterations in pilocytic astrocytoma.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Central Brain Tumor Registry of the United States. Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States, 2004–2008 (CBTRUS, Hinsdale, IL, 2012).

  2. Jones, D.T.W., Gronych, J., Lichter, P., Witt, O. & Pfister, S.M. MAPK pathway activation in pilocytic astrocytoma. Cell Mol. Life Sci. 69, 1799–1811 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Gnekow, A.K. et al. Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro-oncol. 14, 1265–1284 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armstrong, G.T. et al. Survival and long-term health and cognitive outcomes after low-grade glioma. Neuro-oncol. 13, 223–234 (2011).

    Article  PubMed  Google Scholar 

  5. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Jones, D.T.W. et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 68, 8673–8677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones, D.T.W. et al. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28, 2119–2123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pfister, S. et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J. Clin. Invest. 118, 1739–1749 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gutmann, D.H. et al. Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma. Genome Res. 23, 431–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jones, D.T.W. et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100–105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pugh, T.J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Robinson, G. et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 488, 43–48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Downing, J.R. et al. The Pediatric Cancer Genome Project. Nat. Genet. 44, 619–622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stephens, P.J. et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Welch, J.S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cin, H. et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol. 121, 763–774 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Wan, P.T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Rushworth, L.K., Hindley, A.D., O'Neill, E. & Kolch, W. Regulation and role of Raf-1/B-Raf heterodimerization. Mol. Cell Biol. 26, 2262–2272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Terai, K. & Matsuda, M. The amino-terminal B-Raf–specific region mediates calcium-dependent homo- and hetero-dimerization of Raf. EMBO J. 25, 3556–3564 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Macedo, M.P. et al. Multiple mutations in the Kras gene in colorectal cancer: review of the literature with two case reports. Int. J. Colorectal Dis. 26, 1241–1248 (2011).

    Article  PubMed  Google Scholar 

  21. Naguib, A., Wilson, C.H., Adams, D.J. & Arends, M.J. Activation of K-RAS by co-mutation of codons 19 and 20 is transforming. J. Mol. Signal. 6, 2 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schramm, A. et al. Biological effects of TrkA and TrkB receptor signaling in neuroblastoma. Cancer Lett. 228, 143–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Thiele, C.J., Li, Z. & McKee, A.E. On Trk—the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin. Cancer Res. 15, 5962–5967 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Greco, A., Miranda, C. & Pierotti, M.A. Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol. Cell Endocrinol. 321, 44–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Lannon, C.L. & Sorensen, P.H. ETV6-NTRK3: a chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin. Cancer Biol. 15, 215–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Dewitt, J. et al. Constitutively active TrkB confers an aggressive transformed phenotype to a neural crest–derived cell line. Oncogene published online; 10.1038/onc.2013.39 (4 March 2013).

  27. Kaplan, D.R. & Miller, F.D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Theillet, C. et al. FGFRI and PLAT genes and DNA amplification at 8p12 in breast and ovarian cancers. Genes Chromosom. Cancer 7, 219–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Dutt, A. et al. Inhibitor-sensitive FGFR1 amplification in human non–small cell lung cancer. PLoS ONE 6, e20351 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weiss, J. et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci. Transl. Med. 2, 62ra93 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rand, V. et al. Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. Proc. Natl. Acad. Sci. USA 102, 14344–14349 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  33. Singh, D. et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337, 1231–1235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Forbes, S.A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, A. et al. FGF17b and FGF18 have different midbrain regulatory properties from FGF8b or activated FGF receptors. Development 130, 6175–6185 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Lew, E.D., Furdui, C.M., Anderson, K.S. & Schlessinger, J. The precise sequence of FGF receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations. Sci. Signal. 2, ra6 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yoon, K. et al. Fibroblast growth factor receptor signaling promotes radial glial identity and interacts with Notch1 signaling in telencephalic progenitors. J. Neurosci. 24, 9497–9506 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gravendeel, L.A. et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res. 69, 9065–9072 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Sturm, D. et al. Hotspot Mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Roth, R.B. et al. Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 7, 67–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Breitenbuecher, F. et al. Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood 113, 4074–4077 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Chan, G., Kalaitzidis, D. & Neel, B. The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev. 27, 179–192 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Romano, A.A. et al. Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 126, 746–759 (2010).

    Article  PubMed  Google Scholar 

  45. Tartaglia, M. & Gelb, B.D. Noonan syndrome and related disorders: genetics and pathogenesis. Annu. Rev. Genomics Hum. Genet. 6, 45–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Fryssira, H. et al. Tumor development in three patients with Noonan syndrome. Eur. J. Pediatr. 167, 1025–1031 (2008).

    Article  PubMed  Google Scholar 

  47. Sanford, R.A., Bowman, R., Tomita, T., De Leon, G. & Palka, P. A 16-year-old male with Noonan's syndrome develops progressive scoliosis and deteriorating gait. Pediatr. Neurosurg. 30, 47–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Schuettpelz, L.G. et al. Pilocytic astrocytoma in a child with Noonan syndrome. Pediatr. Blood Cancer 53, 1147–1149 (2009).

    Article  PubMed  Google Scholar 

  49. Vulpoi, C. et al. LEOPARD syndrome and pilocytic astrocytome: a random association? Endocrine Abstracts 20, 525 (2009).

    Google Scholar 

  50. Zenker, M. Clinical manifestations of mutations in RAS and related intracellular signal transduction factors. Curr. Opin. Pediatr. 23, 443–451 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Gronych, J. et al. An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice. J. Clin. Invest. 121, 1344–1348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaul, A., Chen, Y.H., Emnett, R.J., Dahiya, S. & Gutmann, D.H. Pediatric glioma–associated KIAA1549:BRAF expression regulates neuroglial cell growth in a cell type–specific and mTOR-dependent manner. Genes Dev. 26, 2561–2566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khuong-Quang, D.A. et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 124, 439–447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Agazie, Y.M. & Hayman, M.J. Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol. Cell Biol. 23, 7875–7886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma, D.K., Ponnusamy, K., Song, M.R., Ming, G.L. & Song, H. Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCγ1 activation for self-renewal of adult neural stem cells. Mol. Brain 2, 16 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Tole, S., Gutin, G., Bhatnagar, L., Remedios, R. & Hebert, J.M. Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum. Dev. Biol. 289, 141–151 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, Y., Gianino, S.M. & Gutmann, D.H. Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. Cancer Cell 22, 131–138 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lee, Y., Yeh, T.H., Emnett, R.J., White, C.R. & Gutmann, D.H. Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region–specific manner. Genes Dev. 24, 2317–2329 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jacob, K. et al. Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clin. Cancer Res. 17, 4650–4660 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Raabe, E.H. et al. BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model. Clin. Cancer Res. 17, 3590–3599 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sievert, A.J. et al. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc. Natl. Acad. Sci. USA 110, 5957–5962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dieci, M.V., Arnedos, M., Andre, F. & Soria, J.C. Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discov. 3, 264–279 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Iyer, R. et al. AZ64 inhibits TrkB and enhances the efficacy of chemotherapy and local radiation in neuroblastoma xenografts. Cancer Chemother. Pharmacol. 70, 477–486 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rusconi, P., Caiola, E. & Broggini, M. RAS/RAF/MEK inhibitors in oncology. Curr. Med. Chem. 19, 1164–1176 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Parkhomchuk, D. et al. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 37, e123 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sultan, M. et al. A simple strand-specific RNA-Seq library preparation protocol combining the Illumina TruSeq RNA and the dUTP methods. Biochem. Biophys. Res. Commun. 422, 643–646 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. Ye, K., Schulz, M.H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25, 2865–2871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, K. et al. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Dees, N.D. et al. MuSiC: identifying mutational significance in cancer genomes. Genome Res. 22, 1589–1598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, J. et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat. Methods 8, 652–654 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, D. & Salzberg, S.L. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 12, R72 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McPherson, A. et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput. Biol. 7, e1001138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

For technical support and expertise, we thank B. Haase, D. Pavlinic and B. Baying (EMBL Genomics Core Facility); M. Wahlers and R. Lück (EMBL High-Performance Computing Facility); the DKFZ Genomics and Proteomics Core Facility; M. Knopf (NCT Heidelberg); K. Schlangen, M. Metsger, K. Schulz, A. Nürnberger, A. Kovacsovics and M. Linser (Max Planck Institute for Molecular Genetics); S. Peetz-Dienhart and Y. Floer (University Hospital Münster); D.M. Pearson (University of Cambridge); and B. Huang, G. Zipprich, M. Heinold, R. Kabbe, A. Wittmann, L. Sieber and L. Linke (DKFZ). W. Stummer (Münster), B. Hoffmann (Münster), B. Rama (Osnabrück), H. Ebel (Hamm), H.A. Trost (Bayreuth) and U. Wildförster (Gelsenkirchen) provided detailed clinical information. We also thank GATC Biotech for sequencing services. This work was principally supported by the PedBrain Tumor Project contributing to the International Cancer Genome Consortium, funded by German Cancer Aid (109252) and by the German Federal Ministry of Education and Research (BMBF, grants 01KU1201A, MedSys 0315416C and NGFNplus 01GS0883). Additional support came from the German Cancer Research Center–Heidelberg Center for Personalized Oncology (DKFZ-HIPO), the Max Planck Society, Genome Canada and the Canadian Institute for Health Research (CIHR) with cofunding from Genome BC, Génome Quebec, CIHR-ICR (Institute for Cancer Research) and C17 (N. Jabado), Ian's Friend Foundation (M.A.K.), the US National Institutes of Health (NIH; grants RO1CA105607 and P30HD018655 to S.L.P.), the Dutch Cancer Foundations KWF (2010-4713) and KIKA (M.K.), the Brain Tumour Charity (S.R.L. and V.P.C.) and the Pediatric Low-Grade Astrocytoma Foundation (M.W.K. and K.L.L.).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

D.T.W.J., S.R.L., D.A.K.Q., A.M.F., H.-J.W., A.M.S., S.H., M. Zuckermann, J.G., S. Schmidt, H.Ş.-C., H.W., S.B., E.P., S. Stark, B.R., D.F., C.C.B., C.v.K., P.v.S., R. Versteeg, M. Sultan, S.W., M.H. and J.F. performed and/or coordinated experimental work. B.H., N. Jäger, D.T.W.J., M.K., H.-J.W., T.Z., B.L., P.A.N., V.H., J.S., J.M., M. Zapatka, M. Schlesner, C.L.W., C.D.I., S.R., C.L., P.v.S., J.K., R. Volckmann and M. Ralser performed data analysis. A.K., M. Ryzhova, C.M., B.W., A.U., C.H.-M., T.M., A.E.K., M.E., M.U.S., Y.-J.C., S.L.P., A.v.D., O.W., M.H., M.A.K., C.G.E., W.S., K.L.L., M.W.K., V.P.C. and N. Jabado collected data and provided materials from study subject. D.T.W.J., B.H., N. Jäger, D.S., N. Jabado, R.E., P.L. and S.M.P. prepared the initial manuscript and figures. A.K., U.D.W., M.D.T., J.O.K., H.L., M.-L.Y., B.B., G.R., V.P.C., N. Jabado, R.E., P.L. and S.M.P. provided project leadership. All authors contributed to the final manuscript.

Corresponding authors

Correspondence to Roland Eils, Peter Lichter or Stefan M Pfister.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary Figures 1–7 (PDF 6288 kb)

Supplementary Table 1

Overview of the sample cohort, MAPK pathway alterations and sequencing statistics (XLSX 23 kb)

Supplementary Table 2

Somatic mutations detected in the pilocytic astrocytoma sequencing cohort (XLS 102 kb)

Supplementary Table 3

Summary of FGFR1 and related mutations in pilocytic astrocytoma and pediatric glioblastoma (XLSX 12 kb)

Supplementary Table 4

Summary of significantly mutated genes (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, D., Hutter, B., Jäger, N. et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45, 927–932 (2013). https://doi.org/10.1038/ng.2682

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2682

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer