Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

State-of-the-art characterization techniques for advanced lithium-ion batteries

Abstract

To meet future needs for industries from personal devices to automobiles, state-of-the-art rechargeable lithium-ion batteries will require both improved durability and lowered costs. To enhance battery performance and lifetime, understanding electrode degradation mechanisms is of critical importance. Various advanced in situ and operando characterization tools developed during the past few years have proven indispensable for optimizing battery materials, understanding cell degradation mechanisms, and ultimately improving the overall battery performance. Here we review recent progress in the development and application of advanced characterization techniques such as in situ transmission electron microscopy for high-performance lithium-ion batteries. Using three representative electrode systems—layered metal oxides, Li-rich layered oxides and Si-based or Sn-based alloys—we discuss how these tools help researchers understand the battery process and design better battery systems. We also summarize the application of the characterization techniques to lithium–sulfur and lithium–air batteries and highlight the importance of those techniques in the development of next-generation batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In situ SEM of a NCA particle during electrochemical cycling.
Figure 2: In situ characterizations for Li2Ru1–ySnyO3 electrode.
Figure 3: In situ characterizations for Li4FeSbO6 electrode.
Figure 4: Operando DEMS.
Figure 5: In situ TEM study for the lithiation process for Si anode.
Figure 6: In situ TEM.
Figure 7: Operando XRD and XAS studies of a Li−S cell.
Figure 8: The change in anodic lithium during discharge–charge cycling.

Similar content being viewed by others

References

  1. Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011).

    Google Scholar 

  2. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Google Scholar 

  3. Lu, J. et al. Aprotic and aqueous Li–O2 batteries. Chem. Rev. 114, 5611–5640 (2014).

    Google Scholar 

  4. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010). This paper reports the first attempt to create a nanoscale electrochemical device inside a transmission electron microscope and observes in-situ the lithiation of the SnO 2 nanowire during electrochemical charging.

    Google Scholar 

  5. Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010). This paper reports the use of in situ NMR spectroscopy to provide time-resolved quantitative information about the nature of the metallic lithium deposited on lithium-metal electrodes.

    Google Scholar 

  6. Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342, 716–720 (2013). Using material tin( II ) oxide as a model material this paper highlights tomography as a tool to guide the development of durable materials and strain-tolerant electrodes.

    Google Scholar 

  7. Liu, X. et al. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy. Nat. Commun. 4, 2568 (2013).

    Google Scholar 

  8. Liu, H. et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344, 1252817 (2014).

    Google Scholar 

  9. Sun, Y. et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013).

    Google Scholar 

  10. Shui, J.-L. et al. Reversibility of anodic lithium in rechargeable lithium–oxygen batteries. Nat. Commun. 4, 2255 (2013).

    Google Scholar 

  11. Chung, S.-Y., Bloking, J. T. & Chiang, Y.-M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1, 123–128 (2002).

    Google Scholar 

  12. Herle, P. S., Ellis, B., Coombs, N. & Nazar, L. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 3, 147–152 (2004).

    Google Scholar 

  13. Hu, Y. S. et al. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv. Mater. 19, 1963–1966 (2007).

    Google Scholar 

  14. Wang, Y., Wang, Y., Hosono, E., Wang, K. & Zhou, H. The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem. Int. Ed. 47, 7461–7465 (2008).

    Google Scholar 

  15. Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).

    Google Scholar 

  16. Wang, J. & Sun, X. Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci. 8, 1110–1138 (2015).

    Google Scholar 

  17. Yamada, A. et al. Room-temperature miscibility gap in LixFePO4 . Nat. Mater. 5, 357–360 (2006).

    Google Scholar 

  18. Sasaki, T., Ukyo, Y. & Nová k, P. Memory effect in a lithium-ion battery. Nat. Mater. 12, 569–575 (2013).

    Google Scholar 

  19. Weichert, K. et al. Phase boundary propagation in large LiFePO4 single crystals on delithiation. J. Am. Chem. Soc. 134, 2988–2992 (2012).

    Google Scholar 

  20. Wang, J., Chen-Wiegart, Y.-C. K. & Wang, J. In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy. Nat. Commun. 5, 4570 (2014).

    Google Scholar 

  21. Belharouak, I., Vissers, D. & Amine, K. Thermal stability of the Li(Ni0.8Co0.15Al0.05)O2 cathode in the presence of cell components. J. Electrochem. Soc. 153, A2030–A2035 (2006).

    Google Scholar 

  22. Sasaki, T., Godbole, V., Takeuchi, Y., Ukyo, Y. & Novák, P. Morphological and structural changes of Mg-substituted Li(Ni,Co,Al)O2 during overcharge reaction. J. Electrochem. Soc. 158, A1214–A1219 (2011).

    Google Scholar 

  23. Miller, D. J., Proff, C., Wen, J., Abraham, D. P. & Bareño, J. Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy. Adv. Energy Mater. 3, 1098–1103 (2013).

    Google Scholar 

  24. Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

    Google Scholar 

  25. Nam, K. W. et al. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv. Funct. Mater. 23, 1047–1063 (2013).

    Google Scholar 

  26. Liu, H., Fell, C. R., An, K., Cai, L. & Meng, Y. S. In-situ neutron diffraction study of the xLi2MnO3·(1 − x)LiMO2 (x = 0, 0.5; M = Ni, Mn, Co) layered oxide compounds during electrochemical cycling. J. Power Sources 240, 772–778 (2013).

    Google Scholar 

  27. Liu, J. et al. General synthesis of xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. J. Mater. Chem. 22, 25380–25387 (2012).

    Google Scholar 

  28. Croy, J., Kang, S.-H., Balasubramanian, M. & Thackeray, M. Li2MnO3-based composite cathodes for lithium batteries: a novel synthesis approach and new structures. Electrochem. Commun. 13, 1063–1066 (2011).

    Google Scholar 

  29. Croy, J. R., Abouimrane, A. & Zhang, Z. Next-generation lithium-ion batteries: the promise of near-term advancements. Mater. Res. Soc. Bull. 39, 407–415 (2014).

    Google Scholar 

  30. Lu, Z., Beaulieu, L., Donaberger, R., Thomas, C. & Dahn, J. Synthesis, structure, and electrochemical behavior of Li[Nix Li1/3− 2x/3Mn2/3 x/3]O2 . J. Electrochem. Soc. 149, A778–A791 (2002).

    Google Scholar 

  31. Thackeray, M. M., Johnson, C. S., Vaughey, J. T., Li, N. & Hackney, S. A. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257–2267 (2005).

    Google Scholar 

  32. Armstrong, A. R. et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 . J. Am. Chem. Soc. 128 8694–8698 (2006).

    Google Scholar 

  33. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Google Scholar 

  34. Croy, J. R. et al. Examining hysteresis in composite xLi2MnO3·(1–x)LiMO2 cathode structures. J. Phys. Chem. C 117, 6525–6536 (2013).

    Google Scholar 

  35. Sathiya, M. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015).

    Google Scholar 

  36. McCalla, E. et al. Understanding the roles of anionic redox and oxygen release during electrochemical cycling of lithium-rich layered Li4FeSbO6 . J. Am. Chem. Soc. 137, 4804–4814 (2015).

    Google Scholar 

  37. Qiu, B. et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016).

    Google Scholar 

  38. Reddy, M., Subba Rao, G. & Chowdari, B. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013).

    Google Scholar 

  39. Park, C.-M., Kim, J.-H., Kim, H. & Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115–3141 (2010).

    Google Scholar 

  40. Phan, V. P., Pecquenard, B. & Le Cras, F. High-performance all-solid-state cells fabricated with silicon electrodes. Adv. Funct. Mater. 22, 2580–2584 (2012).

    Google Scholar 

  41. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    Google Scholar 

  42. Ji, L., Lin, Z., Alcoutlabi, M. & Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682–2699 (2011).

    Google Scholar 

  43. Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotech. 9, 187–192 (2014).

    Google Scholar 

  44. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

    Google Scholar 

  45. Amalraj, S. F. & Aurbach, D. The use of in situ techniques in R&D of Li and Mg rechargeable batteries. J. Solid State Electrochem. 15, 877–890 (2011).

    Google Scholar 

  46. Beaulieu, L., Hatchard, T., Bonakdarpour, A., Fleischauer, M. & Dahn, J. Reaction of Li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 150, A1457–A1464 (2003).

    Google Scholar 

  47. Liu, W.-R. et al. Synthesis and characterization of nanoporous NiSi-Si composite anode for lithium-ion batteries. J. Electrochem. Soc. 154, A97–A102 (2007).

    Google Scholar 

  48. Rhodes, K., Dudney, N., Lara-Curzio, E. & Daniel, C. Understanding the degradation of silicon electrodes for lithium-ion batteries using acoustic emission. J. Electrochem. Soc. 157, A1354–A1360 (2010).

    Google Scholar 

  49. Misra, S. et al. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. Am. Chem. Soc. Nano 6, 5465–5473 (2012).

    Google Scholar 

  50. Hu, Y.-Y. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12, 1130–1136 (2013).

    Google Scholar 

  51. Key, B. et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am. Chem. Soc. 131 9239–9249 (2009).

    Google Scholar 

  52. de Jonge, N. & Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotech. 6, 695–704 (2011).

    Google Scholar 

  53. Liu, X. H. et al. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotech. 7, 749–756 (2012).

    Google Scholar 

  54. Liu, X. H. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011).

    Google Scholar 

  55. Wang, F. et al. Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 3, 1201 (2012). Using a simple in situ electrochemical cell for the transmission electron microscope this work provides new insights into inter-particle and intra-particle lithium transport and the kinetics of lithium conversion reactions.

    Google Scholar 

  56. Lin, F. et al. Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat. Commun. 5, 3358 (2014).

  57. Liu, X. H. et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 11, 2251–2258 (2011).

    Google Scholar 

  58. Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    Google Scholar 

  59. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Google Scholar 

  60. Zhu, Z. et al. Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 1, 16111 (2016). Managing the phase change between gaseous oxygen and crystalline lithium peroxide this work reports a high-performing sealed battery with an oxygen anion-redox electrode that does not involve any gas evolution.

    Google Scholar 

  61. Zhai, D. et al. Disproportionation in Li–O2 batteries based on a large surface area carbon cathode. J. Am. Chem. Soc. 135, 15364–15372 (2013).

    Google Scholar 

  62. Xu, R., Lu, J. & Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 5, 1500408 (2015).

    Google Scholar 

  63. Waluś, S. et al. New insight into the working mechanism of lithium–sulfur batteries: in situ and operando X-ray diffraction characterization. Chem. Commun. 49, 7899–7901 (2013).

    Google Scholar 

  64. Nelson, J. et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 134, 6337–6343 (2012). This paper demonstrates that recrystallization of sulfur by the end of the charge cycle is dependent on the preparation technique of the sulfur cathode while crystalline Li2S does not form at the end of discharge for all sulfur cathodes studied using these X-ray diffraction and transmission X-ray microscopy.

    Google Scholar 

  65. Gao, J., Lowe, M. A., Kiya, Y. & Abruña, H. D. Effects of liquid electrolytes on the charge–discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J. Phys. Chem. C 115, 25132–25137 (2011).

    Google Scholar 

  66. Cuisinier, M. et al. Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 4, 3227–3232 (2013).

    Google Scholar 

  67. Barchasz, C. et al. Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal. Chem. 84, 3973–3980 (2012).

    Google Scholar 

  68. Kraytsberg, A. & Ein-Eli, Y. Review on Li–air batteries—opportunities, limitations and perspective. J. Power Sources 196, 886–893 (2011).

    Google Scholar 

  69. Ganapathy, S. et al. Nature of Li2O2 oxidation in a Li–O2 battery revealed by operando X-ray diffraction. J. Am. Chem. Soc. 136, 16335–16344 (2014).

    Google Scholar 

  70. Black, R. et al. Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 134, 2902–2905 (2012).

    Google Scholar 

  71. Gallant, B. M. et al. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries. Energy Environ. Sci. 6, 2518–2528 (2013).

    Google Scholar 

  72. Huff, L. A., Rapp, J. L., Zhu, L. & Gewirth, A. A. Identifying lithium–air battery discharge products through 6Li solid-state MAS and 1H–13C solution NMR spectroscopy. J. Power Sources 235, 87–94 (2013).

    Google Scholar 

  73. Hutchings, G. S. et al. Environmental in situ X-ray absorption spectroscopy evaluation of electrode materials for rechargeable lithium–oxygen batteries. J. Phys. Chem. C 118, 12617–12624 (2014).

    Google Scholar 

  74. Leskes, M., Moore, A. J., Goward, G. R. & Grey, C. P. Monitoring the electrochemical processes in the lithium–air battery by solid state NMR spectroscopy. J. Phys. Chem. C 117, 26929–26939 (2013).

    Google Scholar 

  75. Lim, H.-K. et al. Toward a lithium–“air” battery: the effect of CO2 on the chemistry of a lithium–oxygen cell. J. Am. Chem. Soc. 135, 9733–9742 (2013).

    Google Scholar 

  76. Lu, J. et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4 2383 (2013).

  77. Jung, H.-G. et al. A transmission electron microscopy study of the electrochemical process of lithium–oxygen cells. Nano lett. 12, 4333–4335 (2012).

    Google Scholar 

  78. Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016). This paper demonstrates for the first time that crystalline LiO 2 can be stabilized via a proper cathode structure in a Li–O 2 battery.

    Google Scholar 

  79. Horstmann, B. et al. Rate-dependent morphology of Li2O2 growth in Li–O2 batteries. J. Phys. Chem. Lett. 4, 4217–4222 (2013).

    Google Scholar 

  80. Kang, S., Mo, Y., Ong, S. P. & Ceder, G. A facile mechanism for recharging Li2O2 in Li–O2 batteries. Chem. Mater. 25, 3328–3336 (2013).

    Google Scholar 

  81. Geng, W., He, B. & Ohno, T. Grain boundary induced conductivity in Li2O2 . J. Phys. Chem. C 117, 25222–25228 (2013).

    Google Scholar 

  82. Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat Chem 7, 50–56 (2015).

    Google Scholar 

  83. Assary, R. S. et al. The effect of oxygen crossover on the anode of a Li–O2 battery using an ether-based solvent: insights from experimental and computational studies. ChemSusChem 6, 51–55 (2013).

    Google Scholar 

  84. Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).

    Google Scholar 

  85. Zhang, T. & Zhou, H. A reversible long-life lithium–air battery in ambient air. Nat. Commun. 4, 1817 (2013).

    Google Scholar 

  86. Luntz, A. C. & McCloskey, B. D. Nonaqueous Li–air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014).

    Google Scholar 

  87. McCloskey, B., Bethune, D., Shelby, R., Girishkumar, G. & Luntz, A. Solvents' critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161–1166 (2011).

    Google Scholar 

  88. McCloskey, B. D. et al. On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J. Am. Chem. Soc. 133, 18038–18041 (2011).

    Google Scholar 

  89. Ogasawara, T., Débart, A., Holzapfel, M., Novák, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).

    Google Scholar 

  90. Chen, Y., Freunberger, S. A., Peng, Z., Bardé, F. & Bruce, P. G. Li–O2 battery with a dimethylformamide electrolyte. J. Am. Chem. Soc. 134, 7952–7957 (2012).

    Google Scholar 

  91. Freunberger, S. A. et al. The lithium–oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50, 8609–8613 (2011).

    Google Scholar 

  92. Lu, J. et al. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries. Nat. Commun. 5, 4895 (2014).

    Google Scholar 

  93. Assary, R. S. et al. The effect of oxygen crossover on the anode of a Li–O2 battery using an ether-based solvent: insights from experimental and computational studies. ChemSusChem 6, 51–55 (2013).

    Google Scholar 

  94. Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. & Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotech. 1, 201–207 (2006).

    Google Scholar 

  95. Truong, T. T. et al. Single-crystal silicon membranes with high lithium conductivity and application in lithium-air batteries. Adv. Mater. 23, 4947–4952 (2011).

    Google Scholar 

  96. Zhang, T. et al. Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium–air secondary batteries with an aqueous electrolyte. J. Electrochem. Soc. 155, A965–A969 (2008).

    Google Scholar 

  97. Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O. & Bruce, P. G. Charging a Li–O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013).

    Google Scholar 

  98. Peng, Z., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 337, 563–566 (2012).

    Google Scholar 

  99. Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z. & Bruce, P. G. The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494–500 (2013).

    Google Scholar 

  100. Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K. & Scrosati, B. An improved high-performance lithium–air battery. Nat. Chem. 4, 579–585 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy under contract DE-AC0206CH11357 with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). T.W. acknowledges the use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, supported by the US DOE under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Lu or Khalil Amine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Wu, T. & Amine, K. State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat Energy 2, 17011 (2017). https://doi.org/10.1038/nenergy.2017.11

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.11

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing